期刊文献+

ECOC多类分类中基分类器non-competence问题研究 被引量:1

Non-competence reliability in multi-classification based on error-correcting output codes
下载PDF
导出
摘要 在纠错输出编码(error-correcting output code,ECOC)多类分类中,当待识别样本的真实类别不属于对应二类子类划分时,训练得到的基分类器将不具备对此类样本进行分类的能力,此时的基分类器在解码融合时面临着non-competence问题。如何衡量基分类器是否具备对样本的分类能力,以及如果不具备,如何减少此种情况下对分类效果的影响是基于ECOC多类分类面临的新问题。针对解码框架中non-competent基分类器的分类融合问题,提出一种基于基分类器对样本是否具有分类能力的加权解码方法。该方法利用支持向量数据描述衡量待识别样本与各划分子类之间的距离,同时利用加权解码,通过对基分类器权重的学习,进而增强对类别拥有分类能力的基分类器的影响,减少不具备分类能力的基分类器产生的误差。基于UCI数据集的实验表明所提方法的有效性和实用性。 Error-correcting output code(ECOC)has been an established technique for multi-classification due to its simpleness and efficiency.However,the non-competent classifiers emerge when they classify an instance whose real class does not belong to one of the subclass sets which are used to learn the classifier.In this regard,in order to analyse the non-competence problem in the ECOC decomposing framework,a new weighted decoding strategy based on classifiers’ competence ability is presented as the solution,which can strengthen the influence of competent classifiers and reduce that of non-competent ones on classification performance through learning weight coefficient of base classifiers.Meanwhile,the support vector data description is applied to compute the distance of instances to each class.The statistic simulations based on UCI datasets corroborate the proposed method.
作者 雷蕾 王晓丹 权文 罗玺 LEILei;WANGXiaodan;QUAN Wen;LUOXi(Air and Missile Defense College, Air Force Engineering University , Xi'an 710051 , China;Air Traffic Control and Navigation College, Air Force Engineering University , Xi’an 710051,China;In formation andNavigation College , Air Force Engineering University , Xi'an 710077,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第12期2637-2645,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61273275 61503407 61703426)资助课题
关键词 多类分类 纠错输出编码 分类能力 支持向量数据描述 multi-classification error-correcting output code(ECOC) classifier competence support vector data description(SVDD)
  • 相关文献

参考文献5

二级参考文献67

  • 1蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 2张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 3胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 4Vladimir N Vapnik. Nature of Statistical Learning Theory[M]. New York: Springer Verlag,2000.
  • 5David M J Tax. Support vector data description [ J ]. Machine Learning,2004,54:45 - 66.
  • 6Hongliang Jin, Qingshan Liu, Hanqing Lu. Face detection using one-class-based support vectors[A ]. Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR'04)[C]. Seoul: IEEE Press,2004.
  • 7Scholkopf B. Estimating the support of a high-dimensional distribution[ J ]. Neural Computation, 2001,13 : 1443 - 1471.
  • 8Tao Ban. Implementing multi-class classifiers by one-class classification methods[ A ] .2006 International Joint Conference on Neural Networks [ C ]. Vancouver: IEEE Press, 2006. 327 - 332.
  • 9VLADIMIR N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 2000,157-183.
  • 10OLIVER C, QUEGAN S. Understanding synthetic aperture radar images [ M ] London : Artech House Inc, 1998:296-315.

共引文献37

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部