摘要
为了解决物流仓储价格与供应商折扣并存条件下的精益生产模拟配送线的分批次多产品采购供应商优选问题,提出了一种多产品分批次采购的供应商选择的多层次决策模型,根据模型的特殊结构将模型转化为一维的开放式车辆路径问题并利用蚁群算法进行求解,该算法将禁忌搜索算法作为局部优化算法,构建一个在超立方框架下执行的Maxmin蚁群(MMACO)算法,同时集成一个后优化过程来进一步优化最优解,以简化求解复杂度。算法初始解产生和邻域操作在对各供应商数量和物资采购次数采用硬约束方法的条件下进行,通过采用惩罚函数的方式对各种物资采购量和物资每月使用量约束进行处理,并设计动态系数将约束逐渐由软约束过渡到硬约束。最后采用所提蚁群算法对算例进行优化求解,并对采用不同解结构、不同启发式算法的算例结果进行了比较,结果表明了所提模型和算法的有效性。
It proposes a supplier selection model in multi-product and multi-batch purchasing based on the lean production simulation dispatching line,designs the ant colony optimization meta-heuristic hybridized with Tabu Search algorithm for the model. To simplify the solving process,it transforms the multi-dimension solution of the model into one-dimension open vehicle routing problems. The proposed algorithm is a Maximum Ant Colony Optimization( MMACO) algorithm hybridized with Tabu Search( TS) algorithm. It builds the hard constraints to control the number of suppliers and purchasing times for single product,obtains the initial solution as well as neighborhood operations on the premise of ACO satisfying these constraints. It defines a dynamic penalty parameter to transfer the constrains from soft to hard,applies MMACO algorithm to optimize the example,and compares the results with different solution structure and heuristic algorithms. Results and analysis demonstrate the validity of the proposed model and its algorithm.
出处
《机械设计与制造工程》
2017年第10期113-118,共6页
Machine Design and Manufacturing Engineering
关键词
采购商优选
开放式车辆路径问题
MMACO算法
禁忌搜索算法
supplier selection model
open vehicle routing problems
hybrid ant colony optimization algorithm
Tabu SeaGch algoithm