期刊文献+

移动机器人视觉SLAM过程中图像匹配及相机位姿求解的研究 被引量:3

Research on image matching and camera pose resolution in mobile robot vision SLAM process
下载PDF
导出
摘要 针对移动机器人视觉SLAM过程中的关键环节图像匹配及相机位姿求解问题,通过ORB特征匹配算法匹配移动机器人采集的两帧图像,得到特征点集。分析了最小二乘法理论特征,根据两帧图像中特征点不变性,采用基于最小二乘法的ICP算法建立相机运动模型,使用SVD分解法求解运动模型,估计相机位姿状态,并通过非线性优化算法验证SVD分解法。利用RGB-D相机Kinect采集图像,对上述算法进行实验,得到准确的相机姿态数据,从而有效解决了三维空间下移动机器人局部移动过程中的定位问题。 In order to solve the key problem of image matching and camera pose in mobile robot visual SLAM process,it proposes ORB feature matching algorithm and matches the two frames captured from the mobile robot,obtains a set of feature points. It analyses the least squares theory characteristics,uses ICP method to establish the camera motion model according to the feature points of two frame image invariance,applies SVD camera pose estimation to build the motion model. It verifies the SVD decomposition method based on the nonlinear optimization algorithm,uses the RGB-D Kinect camera to capture images,tests the algorithm. The obtained camera pose data solve effectively the problem of three-dimensional positioning of mobile robot under local mobile process.
作者 林志诚 郑松
出处 《机械设计与制造工程》 2017年第11期13-18,共6页 Machine Design and Manufacturing Engineering
关键词 视觉同步定位与地图构建 ORB特征 匹配算法 迭代最近点算法 visual SLAM ORBfeature matching algorithm ICP algorithm
  • 相关文献

参考文献1

二级参考文献87

  • 1Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68.
  • 2Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193.
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110.
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117.
  • 5Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004.
  • 6Aulinas J, Petillot Y R, Salvi J, et al. The SLAM problem: asurvey[J]. CCIA, 2008, 184(1): 363-371.
  • 7Ros G, Sappa A, Ponsa D, et al. Visual SLAM for driverlesscars: a brief survey[C] //Proceedings of IEEE Workshop onNavigation, Perception, Accurate Positioning and Mapping forIntelligent Vehicles. Los Alamitos: IEEE Computer SocietyPress, 2012: Article No.3.
  • 8Triggs B, Mclauchlan P F, Hartley R I, et al. Bundle adjustment -a modern synthesis[C] //Proceedings of International Workshopon Vision Algorithms: Theory and Practice. Heidelberg: Springer,1999: 298-372.
  • 9Indelman V, Williams S, Kaess M, et al. Information fusion innavigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738.
  • 10Forster C, Carlone L, Dellaert F, et al. IMU preintegration onmanifold for efficient visual-inertial maximum-a-posterioriestimation [C] //Proceedings of Robotics: Science and Systems.Rome: Robotics: Science and Systems, 2015: Article No.6.

共引文献162

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部