期刊文献+

航拍视频中运动目标检测算法研究 被引量:5

Research on Detecting Algorithm of Moving Target in Aerial Video
下载PDF
导出
摘要 针对复杂背景下航拍视频中的运动目标检测问题,提出一种基于改进的特征匹配算法与全局运动补偿的防抖方法,以及结合多帧能量累积的运动目标检测算法。首先,采取局部区域匹配法加快该算法的处理速度,避免运动目标对背景补偿的影响;其次,利用尺度不变的SURF算法,结合快速近似最邻近搜索算法得到匹配点对,并通过双向匹配和K-近邻算法筛选优秀匹配点;然后,建立仿射变换模型,求解运动参数,并进行运动补偿;最后,通过多帧能量累积进行目标检测。仿真结果表明,该方法具有良好的运动目标检测效果。 A detecting algorithm of moving target based on the combination between mul tiple frame energy accumula-t ion and a stabilization method which is combined between improved feature matching algorithm and global motion com-pensation according to the moving target detection in the aerial video under complex background was proposed. Firstly, it uses the matching method of local area to increase the processing speed of the algorithm, and avoids the influence of the moving target on the background compensation. Secondly, it gets the matching points using the scale-invariant SURF algorithm in combination wi th the fast approximate nearest neighbor search method, and screens the superior matching points with bilateral matching and k-nearest Neighbor algorithm. Thirdly, it builds the affine transformation model,solves the motion parameters,and makes motion compensation. Finally,it detects moving target through multiple frame difference accumulation. The simulation results show that the method has good effect on moving target detection.
出处 《计算机科学》 CSCD 北大核心 2017年第B11期175-177,183,共4页 Computer Science
基金 广东省科技计划项目(2013B051000044) 广东大学生科技创新培育专项资金(pdjh2017b0927) 广东省青年创新人才项目(2016KQNCX204)资助
关键词 航拍视频 特征匹配 快速近似最邻近搜索算法 运动补偿 运动目标检测 Aer ial video,Feature matching,Fast approximate nearest neighbor search algor i thm,Mot ion compensation, Moving target detection
  • 相关文献

参考文献3

二级参考文献39

  • 1杨听,汤国安,邓风东,等.ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009.
  • 2Lowe D. Distinctive Image Features from Scale-In- variant Keypoints]-J2. IJCV, 2004, 60(2): 91-110.
  • 3Bay H, Ess A, Tuytelaars T, et al. Speeded-up Robust Features (SURF)FJ. Computer Vision and Image Understanding, 2008, 110(3) :346-359.
  • 4Matas J, Chum O, Vrban M, et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions[C]. The British Machine Vision Confer- ence, Cardiff, UK, 2002.
  • 5Viola P, Jones M J. Rapid Object Detection Using a Boosted Cascade of Simple Features EC]. CVPR, Kauai, HI, USA, 2001.
  • 6Lienhart R, Kuranov A, Pisarevsky V. Empirical Analysis of Detection Cascades of Boosted Classifi- ers for Rapid Object Detection]-C. DAGM 25th Pattern Recognition Symposium, Magdeburg, Ger- many, 2003.
  • 7Mohan A, Papageorgiou C, Poggio T. Example- based Object Detection in Images by Components [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4): 349-361.
  • 8Papageorgiou C, Oren M, Poggio T. A General Framework for Object DetectionEC]. ICCV, Bom- bay, India, 1998.
  • 9Fischler M A, Bolles R C. Random Sample Consen- sus A Paradigm for Model Fitting with Applica- tions to Image Analysis and Automated Cartography [J]. Communications of the ACM, 1981,24 (6) : 381-395.
  • 10Martin A. Fischler,Robert C. Bolles.Random sample consensus[J]. Communications of the ACM . 1981 (6)

共引文献44

同被引文献53

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部