期刊文献+

基于非线性重构模型的植物叶片图像集分类方法

Plant Leaf Image Set Classification Approach Based on Non-linear Reconstruction Models
下载PDF
导出
摘要 提出一种基于非线性重构模型的植物叶片图像集的分类识别方法。该方法首先使用高斯受限玻尔兹曼机(GRBMs)通过非监督预训练来初始化模型的权值;然后针对每一个植物叶片图像集用初始化的模型训练得到一个特定的模型;最后根据测试样本的最小重构误差和测试样本集的最多投票策略来判定测试样本集的类别。该方法通过图像预处理来处理图像,避免了图像在缩放时发生形变,并采用基于k-means的特征提取方法来提取植物叶片图像特征。实验结果表明,该方法能够准确地对植物叶片图像集进行分类识别。 In this paper, a plant leaf image set identification approach was proposed based on non-linear reconstruction models. This approach initializes the parameters of model by performing unsupervised pre-training using Gaussian re-stricted Boltzmann machines(GRBMs). Then, the pre-initialized model is separately trained for images of each plant set and class-specific models are learnt. At last, based on the minimum reconstruction error from the learnt class-specific models,majority voting strategy is used for classification. Besides, in order to avoid occurring deformation during the image scaled, this paper normalized plant image by image preprocessing and a method of feature extraction was used based on k-means. The experimental results show that this approach can accurately classify the class of plant image set.
出处 《计算机科学》 CSCD 北大核心 2017年第B11期212-216,共5页 Computer Science
基金 国家自然科学基金项目(61175121) 福建省自然科学基金项目(2013J06014) 华侨大学中青年教师科研提升资助计划项目(ZQN-YX108)资助
关键词 非线性重构模型 高斯RBMs k-means特征提取 图像预处理 Non-l inear reconstruction models, Gaussian restricted Boltzmann machines, K-means feature extract , Image preprocessing
  • 相关文献

参考文献2

二级参考文献30

  • 1傅弘,池哲儒,常杰,傅承新.基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ[J].植物学通报,2004,21(4):429-436. 被引量:40
  • 2赵温波,杨鹭怡,王立明.径向基概率神经网络的混合结构优化算法[J].系统仿真学报,2004,16(10):2175-2180. 被引量:14
  • 3傅星,卢汉清,罗曼丽,曹伟,于兴华.应用计算机进行植物自动分类的初步研究[J].生态学杂志,1994,13(2):69-71. 被引量:8
  • 4王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 5Huang Deshuang. Radial Basis Probabilistic Neural Networks: Model and Application. International Journal of Pattern Recognition and Artificial Intelligence, 1999, 13(7): 1083-1101
  • 6Huang Deshuang, Zhao Wenbo. Determining the Centers of Radial Basis Probabilistic Neural Networks by Recursive Orthogonal Least Square Algorithms. Applied Mathematics and Computation, 2005, 162(1): 461-473
  • 7Gonzalez R C, Wintz P. Digital Image Processing. 2nd Edition. Boston, USA: Addison-Wesley, 1987
  • 8Ingrouille M J, Laird S M. A Quantitative Approach to Oak Variability in Some North London Woodlands. London Naturalist, 1986, 65:35-46
  • 9Guyer D E, Miles G E, Schreiber M M, et al. Machine Vision and Image Processing for Plant Identification. Transactions of the ASAE, 1986, 29(6): 1500-1507
  • 10Guyer D E, Miles G E, Gaultney L D, etal. Application of Machine Vision to Shape Analysis in Leaf and Plant Identification. Transactions of the ASAE, 1993, 36(1): 163-171

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部