期刊文献+

气浮台-复合材料层合板多体系统的刚-柔耦合动力学研究 被引量:1

Rigid-flexible coupling dynamics of air-bearing test bed-composite laminate multi-body system
下载PDF
导出
摘要 基于非线性应变和位移关系,忽略横向剪切变形,用绝对节点坐标法建立了大变形复合材料层合板几何非线性动力学模型。在此基础上,综合考虑层合板风阻和气浮台风阻的影响,建立了气浮台-复合材料层合板多体系统的刚-柔耦合动力学模型。为了真实反映物体之间的约束关系,将气浮台和层合板之间的约束表示为面与面的固定约束。在单轴气浮台动力学仿真实验平台上进行了带有角位移驱动的复合材料层合板大变形刚-柔耦合动力学实验,验证了理论模型的正确性。比较了传统的点固定约束与面固定约束的计算结果差异,阐明了面固定约束的合理性。此外,分析了层合板风阻和气浮台风阻对仿真结果的影响,说明了考虑层合板风阻的必要性。 Based on the nonlinear relationship between strain and displacement, the geometric nonlinear dynamic model of large deformation composite laminates is established by using absolute nodal coordinate method with ignoring the transverse shear deformation. On this basis, considering the impact of the wind resistance of both the laminate and the air-bearing test bed, the air-bearing test bed-composite laminate of rigid-flexible coupling multi-body dynamic system model is established. In order to reflect the constraint relations between the objects, the constraints between the air bearing test bed and the laminate is ex-pressed as the fixed surface-surface constraint. In the single axis air-bearing test bed, the rigid-flexible coupling dynamic exper-iment of the composite laminate with angular displacement drive is carried out, which verifies the correctness of the theoretical model. The difference between the traditional point fixed constraint and the surface fixed constraint proposed in this paper is analyzed, and the validity of the surface fixed constraint is illustrated. In addition, the impact of the wind resistance of both the laminate and the air-bearing test bed is analyzed, and the necessity of considering wind resistance of laminate is illustrated.
出处 《振动工程学报》 EI CSCD 北大核心 2017年第5期703-712,共10页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(11272203 11132007)
关键词 多体系统 刚-柔耦合动力学 复合材料层合板 大变形 multi-body systems rigid-flexible coupling dynamics composite laminated plates large deformation
  • 相关文献

参考文献6

二级参考文献28

  • 1Wallrapp O,Schwertassek R.Representation of geometric stiffening in multi-body system simulation[J].International Journal for Numerical Methods in Engineering,1991,32:1833-1850.
  • 2Yoo H H,Chung J.Dynamics of rectangular plates undergoing prescribed overall motion[J].Journal of Sound and Vibration,2001,239 (1):123-137.
  • 3Zhang D J,Liu C Q,Huston R L.On the dynamics of an arbitrary flexible body with large overall motion:an integrated approach[J].Mechanics of Structures and Machines,1995,23 (3):419-438.
  • 4Yakoub R R,Shabana A A.Three dimensional absolute nodal coordinate formulation for beam elements:implementation and applications[J].ASME Journal of Mechanical Design,2001,123:614-621.
  • 5Dmitrochenko O N,Pogorelov D Y.Generalization of plate finite elements for absolute nodal coordinate formulation[J].Multibody System Dynamics,2003,10:17-43.
  • 6Yoo W S,Kim M S,Kim H W,et al.Developments of multibody system dynamics:computer simulations and experiments[J].Multibody System Dynamics,2007,18:35-58.
  • 7Likins PW. Finite element appendage equations for hybrid coordinate dynamic analysis. Journal of Solids & Structures,1972,8:709~731
  • 8Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance Control and Dynamics,1987,10(2): 139~151
  • 9Banerjee AK, Lemak MK. Multi-flexible body dynamics capturing motion-induced stiffness. ASME Journal of Applied Mechanics,1991,58:766~775
  • 10Sharf I. Geometric stiffening in multibody dynamics for mulations. Journal of Guidance, Control and Dynamics,1995,18(4): 882~891

共引文献102

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部