期刊文献+

基于双树复小波包的柴油机时频奇异谱特征提取研究 被引量:1

Study on diesel engine feature extraction of time-frequency singular value spectrum based on dual-tree complex wavelet packet transform
下载PDF
导出
摘要 针对传统时频分布计算量大、分析速度慢和特征提取复杂的缺点,提出一种基于双树复小波包时频奇异谱的柴油机特征提取方法,研究了基于双树复小波包变换的基本原理及其离散时频分布,运用奇异值分解方法对所得的离散时频分布进行特征提取,获得离散时频奇异谱。结合柴油机不同工况测试试验,对比分析了该离散时频特征提取方法的计算效率、不同工况下的特征提取效果,试验结果表明:该方法分析速度快,能够有效表征柴油机不同的运行工况。 In view of the limitation of mass calculation, slow analysis velocity and complicated feature extraction of traditional time-frequency, the feature extraction method of diesel engine based on time-frequency distribution singular value spectrum was proposed. The discrete Dual-Tree Complex Wavelet Packet Transform (DT-CWPT) transform method and the discrete time-fre- quency distribution was studied ,then the feature was extracted by singular value decomposition. The comparison of calculation ef- ficiency and feature extraction effect was analyzed based on different working condition test of diesel engine. The results indicate that the method has high computation efficiency and good performance of accuracy.
出处 《现代制造工程》 CSCD 北大核心 2017年第11期145-149,共5页 Modern Manufacturing Engineering
基金 国家自然科学基金资助项目(51305454)
关键词 双树复小波包 离散时频分布 特征提取 时频奇异谱 dual-tree complex wavelet packet transform discrete time frequency distribution feature extraction time frequencysingular value spectrum
  • 相关文献

参考文献5

二级参考文献41

  • 1王志华.基于时频分析的柴油机活塞环故障振动诊断研究(英文)[J].武汉理工大学学报(交通科学与工程版),2004,28(6):953-956. 被引量:3
  • 2陈光军,胡昌华,任章,周志杰.基于时频分析和模式识别的惯性器件故障监测与诊断技术研究[J].电光与控制,2006,13(2):85-87. 被引量:2
  • 3葛郢汉.发动机异响的分析与诊断[J].交通标准化,2006,34(9):179-183. 被引量:3
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 5WU Jianda, CHEN Jiechen. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines[J]. NDT&E international, 2006, 39: 304-311.
  • 6PENG Z K, CHU F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18: 199-221.
  • 7LIN Jing. Feature extraction of machine sound using wavelet and its application in fault diagnosis[J]. NDT&E international, 2001, 34: 25-30.
  • 8YANG W X, REN X M. Detecting impulses in mechanical signals by wavelets[J].EURASIP Journal on Applied Processing, 2004, 8. 1 156-1 162.
  • 9SMITH C, AKUJUOBI C M, HAMORY P, et al. An approach to vibration analysis using wavelets in an application of aircraft health monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21: 1 255-1 272.
  • 10GENG Zunmin, CHEN Jin, HULL J B. Analysis of engine vibration and design of an applicable diagnosing approach[J]. Mechanical Sciences, 2003, 45:1 391- 1 410.

共引文献85

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部