期刊文献+

预制疲劳裂纹应力强度因子幅对超高强度钢断裂韧度的影响 被引量:1

Effects of Stress Intensity Factor Range for Fabricating Fatigue Pre-cracks on Fracture Toughness of Ultra-High Strength Steel
下载PDF
导出
摘要 采用多试样法对D406A超高强度钢进行了准静态断裂韧度KⅠC试验,分析了不同应力强度因子幅预制疲劳裂纹对疲劳预裂纹扩展周期、疲劳预裂纹扩展速率、试样断口形貌以及最终断裂韧度试验结果的影响。结果表明:疲劳预裂纹扩展周期和扩展速率均与应力强度因子幅呈指数变化规律,断口上的疲劳裂纹间距及最终断裂韧度试验结果均随应力强度因子幅的增大而增大,在材料断裂韧度KⅠC的20%~30%选择最大应力强度因子进行KⅠC试验结果较为稳定。 The quasi-static fracture toughness(K(ⅠC)) test of D406 A ultra-high strength steel was carried out by using multi-sample method,the effects of stress intensity factor range for prefabricating fatigue crack on the fatigue pre-crack propagation cycle,fatigue pre-crack propagation rate,fracture surface morphology and ultimate fracture toughness were investigated. The results show that the fatigue pre-crack propagation cycle and rate were both of an exponential relationship with the stress intensity factor range,and the fatigue crack spacing on the fracture samples and the final fracture toughness increased with the increase of stress intensity factor ranges. If the maximum stress intensity factor was selected in the range of(20%-30%) K(ⅠC)of the material,the K(ⅠC)test results would be relatively stable.
作者 刘晓菊 刘许龙 薛庆贺 LIU Xiaoju;LIU Xulong;XUE Qinghe(Xi'an Aerospace Power Machine Factory, Xi'an 710025, China)
出处 《理化检验(物理分册)》 CAS 2017年第10期712-716,共5页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
关键词 疲劳预裂纹 应力强度因子幅 超高强度钢 疲劳裂纹扩展速率 断裂韧度 fatigue pre-crack stress intensity factor range ultra-high strength steel fatigue crack propagation rate fracture toughness
  • 相关文献

参考文献5

二级参考文献47

  • 1张君尧.航空结构用高纯高韧性铝合金的进展(2)[J].轻金属,1994(8):59-63. 被引量:9
  • 2陈玉新,凌祥,涂善东.SUS304材料的小冲孔蠕变试验研究[J].实验力学,2005,20(2):219-225. 被引量:12
  • 3孟亮,郑修麟.铝锂合金力学性能的各向异性[J].有色金属,1996,48(4):82-88. 被引量:5
  • 4袁成祺.美国四种高纯度变形铝合金及其使用标准[J].航空材料,1985,(5):32-32.
  • 5任继嘉(译).高强变形铝合金[J].轻合金加工技术,1986,(2):33-33.
  • 6彭善民.过时效对LC9合金组织和性能的影响[J].轻合金加工技术,1983,(11):18-18.
  • 7[1]Timofeev B T, Blumin A A, Anikovsky ⅤⅤ. Fracture toughness of low carbon steels and their weldments. Int. J. of Pressure Vessels and Piping, 1998, 75: 945 ~ 950.
  • 8[2]Putatunda Susil K. Fracture toughness of high carbon and high silicon steel. Materials Science and Engineering, 2001, A297:31 ~ 43.
  • 9[3]Tahtinen S, Laukkanen A, Singh B N. Damage mechanisms and fracture toughness of GlidCop(R) CuAl25 IGO copper alloy. J. of Nuclear Materials, 2000, 283~287:1028~1032.
  • 10[4]Nagal G, Blauel J G. Evaluation of the standard master curve for fracture toughness determination. Nuclear Engineering and Design, 1999, 190:159~169.

共引文献37

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部