期刊文献+

磁场下夹层结构的高能电子屏蔽性能

Shielding ability of sandwich configuration for high-energy electrons in magnetic field
下载PDF
导出
摘要 针对空间高能电子环境可能造成的航天设备故障、宇航员辐照损伤等情况,基于电子束返回效应,提出了一种磁场下金属/真空夹层式高能电子屏蔽结构。采用Geant4软件,模拟空间高能电子连续能谱,研究磁场下夹层式结构的高能电子屏蔽性能。此外,建立体素模型,计算射线在人体中的累积剂量,从而评估磁感应强度、屏蔽体材料对屏蔽性能的影响。结果表明:与传统被动屏蔽方式相比,夹层式结构具有电子屏蔽性能高、生成透射次级X射线少的特点;随着磁感应强度增加,体模中累积剂量下降,证明夹层结构的电子屏蔽性能不断提升;Ti/Ti材料组合的屏蔽方式具有更优越的高能电子屏蔽性能。该结构具备较好的高能电子屏蔽性能,将来有望对空间高能电子辐射环境进行有效防护。 Given the aerospace equipment failure and radiation damage of astronauts caused by spatial high-energy electron,a metal/vacuum sandwich configuration was proposed based on electron return effects induced by magnetic field.The continuous energy spectrum of spatial high-energy electron was simulated and shielding ability of sandwich configuration in magnetic field was investigated by using the Monte Carlo method.Moreover,the influences of magnetic flux density and layer of metal on the shielding property of sandwich systems were investigated by using a female Chinese hybrid reference phantom based on cumulative dose.Results show that the sandwich systems presented have improved shielding ability to electrons and less secondary X-ray transmissions than the conventional systems.The cumulative dose decreased and shielding ability increased with increasing magnetic flux intensity.The Ti/Ti sandwich configuration exhibited superior high-energy shielding performance.Due to its effective high-energy electron shielding ability,this type of shielding system might be used for further space radiation protection in a highenergy electron environment.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2017年第12期137-142,共6页 High Power Laser and Particle Beams
基金 南京航空航天大学研究生创新基地开放基金(kfjj20160608 kfjj20170609) 江苏省优势学科建设工程资助项目
关键词 夹层结构 磁场 电子屏蔽 电子束返回效应 剂量评估 sandwich configuration magnetic field electron shielding electron return effects dose evaluation
  • 相关文献

参考文献1

二级参考文献9

  • 1祁章年.载人航天的福射防护与监测[M].北京:国防工业出版社,2003.
  • 2Cucinotta F A,Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings[J]. TheLancet Oncology . 2006,7(5):431-435.
  • 3Schimmerling W, Cucinotta F,Wilson J. Radiation risk and human space exploration[J]. Advances in Space Research , 2003,31(1) ? 27-34.
  • 4Ballarini F, Battistoni G,Cerutti F,et al. OCR and SPE organ doses in deep space with different shielding: Monte Carlo simulations basedon the FLUKA code coupled to anthropomorphic phantoms[J]. Advances in Space Research,2006,37(9) : 1791-1797.
  • 5Badavi F F,Wilson J W,Hunter A. Numerical study of the generation of linear energy transfer spectra for space radiation applications[J3.Advances in Space Research f 2010,47(9) : 1608-1615.
  • 6O’Neill P M. Badhwar-O,Neill galactic cosmic ray model update based on advanced composition explorer( ACE) energy spectra from 1997 topresent[J]. Advances in Space Research , 2006,37(9) : 1727-1733.
  • 7Agostinelli S,Allison J, Amako K,et al. GEANT4—a simulation toolkit[J], Nuclear Instruments and Methods in Physics Research Sec-tion A , 2003, 506(3):250-303.
  • 8Valentin J. Basic anatomical and physiological data for use in radiological protection reference values[J]. Annals of the ICRP, 2002 ,32(3/4):1-277.
  • 9路伟,王同权,王尚武,陈达毅,王兴功.GEANT4SPE质子屏蔽和半导体材料辐射效应模拟[J].计算物理,2009,26(4):591-596. 被引量:2

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部