期刊文献+

ABC算法优化SVR的磨损故障预测模型 被引量:1

Wear Fault Prediction Model Based on SVR Optimized by ABC
下载PDF
导出
摘要 目的为了提高故障预测的精度,针对支持向量回归SVR(Support vector machine for regression,SVR)参数选择困难的问题,提出一种采用人工蜂群(artificial bee colony,ABC)算法优化支持向量回归(SVR)的故障预测模型(ABC-SVR)。方法该模型先对样本数据进行重构,然后将故障预测误差(适应度)作为优化目标,通过ABC算法寻优找到最优的SVR参数,建立故障预测模型。最后通过实例仿真验证模型的优越性。结果采用ABC算法优化的SVR故障预测模型进行时间序列预测,能够较好地跟踪发动机滑油金属元素浓度的变化过程,并且能够提前2个取样时间预测异常情况的出现。结论 ABC-SVR模型有效解决了SVR参数选择难题,能够更加准确地表现故障变化规律,提高了故障预测精度。 Objective To improve the prediction accuracy of wear faults, a wear fault prediction model (ABC-SVR), which was based on support vector machine for regression (SVR) optimized by artificial bee colony(ABC) algorithm was proposed. Methods The model reconstructed the time series of wear faults and took the wear fault prediction accuracy as the optimization objective to find out the optimal SVR parameters by ABC algorithm and build prediction model of wear faults. Finally, the simulative contrasting experiment was applied to test the performance of the model. Results Time se-ries prediction with SVR forecasting model optimized by ABC algorithm could track the concentration change process of metallic element in engine lubricating oil and predict the presence of the abnormal situation ahead of 2 sampling time. Conclusion ABC-SVR solves the problem of SVR parameter optimization, can describe the complicated change rules of wear faults accurately, and improves the accuracy of wear faults prediction.
出处 《装备环境工程》 CAS 2017年第11期98-102,共5页 Equipment Environmental Engineering
关键词 磨损故障 人工蜂群优化算法 支持向量回归 预测模型 wear faults artificial bee colony optimization algorithm support vector machine for regression prediction model
  • 相关文献

参考文献6

二级参考文献90

  • 1胡雪棉,赵国浩.基于Matlab的BP神经网络煤炭需求预测模型[J].中国管理科学,2008,16(S1):521-525. 被引量:42
  • 2段宏飞,姜振泉,张蕊,朱术云.杨村煤矿综采条件下薄煤层底板破坏深度的实测与模拟研究[J].煤炭学报,2011,36(S1):13-17. 被引量:30
  • 3董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788. 被引量:63
  • 4[1]Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S.,Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X.,et al., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature,403:503-511.
  • 5[2]Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002.Choosing kernel parameters for support vector machines.Machine Learning, 46:131-159.
  • 6[3]Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press,Cambridge.
  • 7[4]Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97:77-87.
  • 8[5]Furlanello, C., Serafini, M., Merler, S., Jurman, G., 2003. An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 16:641-648.
  • 9[6]Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing,J.R., Caligiuri, M.A., et al., 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
  • 10[7]Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.

共引文献73

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部