期刊文献+

基于CCD图像传感器的压缩成像方法 被引量:3

Compressive Imaging Method Based on CCD Image Sensor
原文传递
导出
摘要 压缩感知理论将信号采样和压缩同时进行,且采样频率远低于奈奎斯特频率,为低分辨率采样高分辨率成像提供了可能。为此,提出一种基于CCD图像传感器的压缩成像方法,利用CCD图像传感器模拟像素值串行输出不可重复使用的特点,对图像进行单次测量,构造半循环半随机测量矩阵对CCD图像传感器输出的模拟值进行压缩测量,基于增广拉格朗日法和交替方向法的最小全变分算法(TVAL3)算法解压缩重构图像。该成像方法测量矩阵的稀疏性较强,能较好地恢复原始图像,同时模拟/数字负担及量化编码的复杂度大大降低,成像系统结构简单,实用性强。仿真结果表明,所提成像算法重构的图像主客观质量较好。 The signal acquisition and compression can be made simultaneously and the signal sampling rate is much lower than the Nyquist frequency in the compressive sensing theory, which provides the possibility for high resolution imaging from low resolution sampling data. A compressive imaging method based on CCD image sensor is proposed. By using the unrepeatable characteristic of the serial output analog pixel value of the CCD image sensor in a single measurement, the semi^cyclic and semi random measurement matrices are constructed to compress and measure the analog values outputted by CCD image sensor. Then the total variational algorithm based on augmented Lagrangian (TVAL3) arithmetic is used to,decompress and reconstruct the image. This imaging method is good at measuring the sparsity of the matrices, and the original images can be well recovered. The proposed method can greatly alleviate the burden of analog digital and the complexity of quantization coding, which also has a simple structure and strong practicability. Simulation results show that the reconstructed image has better subjective and objective quality with the proposed method.
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第11期158-165,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61101226)
关键词 成像系统 压缩感知 CCD图像传感器 imaging systems compressive sensing CCD image sensor
  • 相关文献

参考文献7

二级参考文献72

  • 1彭翔,张鹏,位恒政,于斌.双随机相位加密系统的已知明文攻击[J].物理学报,2006,55(3):1130-1136. 被引量:22
  • 2彭翔,汤红乔,田劲东.双随机相位编码光学加密系统的唯密文攻击[J].物理学报,2007,56(5):2629-2636. 被引量:42
  • 3X. Gao, C. Li, and G. Y. Fang. Chin. Phys. Lett. 6, 068401 (2011).
  • 4Q. Li, K. Xue, Y. D. Li, and Q. Wang, Appl. Opt. 51, 7052 (2012).
  • 5M. S. Heimbcck, M. K. Kim. D. A. Gregory, and H. O. Everitt. Opt. Express 19, 9192 (2011).
  • 6R. J. Mahon. J. A. Murphy, and W. Lanigan, Opt. Commun. 260, 469 (2006).
  • 7Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun. Strain 44, 380 (2008).
  • 8I. McAuley, J. A. Murphy, N. Trappe, R. Mahon, D. McCarthy, and P. McLaughlin. Proc. SPIE 7939, 1 (2011).
  • 9K. Xue, Q. Li. Y. D. Li, and Q. Wang, Opt. Lett. 37, 3228(2012).
  • 10D. L. Donoho. IEEE Trans. Inf. Theory 52, 1289 (2006).

共引文献33

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部