摘要
针对指标值为区间灰数时决策信息得不到充分利用的问题,在决策信息不丢失的前提下,利用信息分解方法将区间灰数分解成实数型的"白部"和"灰部",并对信息分解下区间灰数的白化值的性质进行研究.对于指标权重为区间灰数的情况,通过定义区间灰数相离度和接近度构建权重确定的优化模型.在TOPSIS理论基础上,建立区间灰数序列间的灰色关联的测度方法,进而构建灰色关联一致性系数决策模型.最后通过算例分析表明所构建模型的可行性和有效性.
For the problem that information of the interval grey number can not make full use of decision information,on the premise of information without losing, the interval grey number is decomposed into real type sequences of"white sequence"and"grey sequence", and the whitenization of interval grey numbers are studied based on the information decomposition method. If the index weights are interval grey numbers, the optimization model is constructed to determine weights by defining the interval grey number deviation degree and close degree. The grey correlation between interval grey number sequences is established based on the TOPSIS theory. Then the consistency coefficient of the grey incidence decision-making model is proposed. Finally, an example is given to illustrate the feasibility and effectiveness of the proposed model.
出处
《控制与决策》
EI
CSCD
北大核心
2017年第11期2107-2112,共6页
Control and Decision
基金
安徽省社科规划项目(AHSKY2016D27)
国家自然科学基金与英国皇家学会国际合作交流项目(71111130211)
安徽省高校人文社会科学重点研究项目(SK2017A0534)
关键词
信息分解
区间灰数
关联一致性决策
information decomposition
interval grey numbers
the consistency coefficient decision-making