期刊文献+

压缩编码孔径成像重构算法 被引量:1

Calibration of Reconstruction Algorithm for Compressive Coded Aperture Imaging
下载PDF
导出
摘要 现有光测成像设备易受到目标特性、天气、成像系统等多种因素影响,传统成像体制下难以突破探测器和光学系统限制,无法实现目标场景的高分辨率成像以及图像的快速传输和实时处理。压缩编码孔径成像技术作为一种新型成像体制,可突破探测器成像极限,实现超分辨率成像。该成像体制主要利用图像的稀疏性,通过重构算法求解数学模型进而高分辨率恢复目标图像;重构算法是压缩编码孔径成像过程的关键步骤,在一定程度上决定了图像的重构精度以及重构速度;对现有的压缩编码孔径成像重构算法进行分类总结,并对典型算法进行仿真验证,可为该领域未来的研究提供借鉴。 The existing optical imaging equipment is susceptible to target characteristics,weather,imaging system and other factors.Compressive coding aperture technology,as a new type of imaging system,could break through the imaging detector limit,and realize the super-resolution imaging.The imaging system mainly uses the sparseness of the image,and reconstructs the mathematical model by reconstructing the algorithm,and then reverts the target image with high resolution.The reconstruction algorithm is a critical step in compressed coded aperture imaging to a certain determines the quality of the reconstructed image.The existing compression coding aperture imaging reconstruction algorithm is classified and summarized,which can provide reference for research of this field for the future.
出处 《兵器装备工程学报》 CAS 2017年第10期191-196,共6页 Journal of Ordnance Equipment Engineering
关键词 压缩编码孔径 重构算法 超分辨率重构 compressive coded aperture reconstruction algorithm super-resolution imaging
  • 相关文献

参考文献8

二级参考文献80

  • 1时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 2Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J. Compressive Sampling[C]//Proc. of International Congress of Mathematicians. Madrid, Spain: [s. n.], 2006: 1433-1452.
  • 4Gilbert A C, Guha S, Indyk P, et al. Near-optimal Sparse Fourier Representations via Sampling[C]//Proc. of Annual ACM Symposium on Theory of Computing. Montreal, Canada: Association for Computing Machinery, 2002:152-161.
  • 5Maleki A, Donoho D L. Optimally Tuned Iterative Re- construction Algorithms for Compressed Sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 330-341.
  • 6Hager W W, Park S. The Gradient Projection Method with Exact Line Search[J]. Journal of Global Optimization, 2004, 30(1): 103-118.
  • 7Shanno D F. Conditioning of Quasi-Newton Method for Function Minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 9Dennis J E, Martinez H J, Tapia R A. Convergence Theory for the Structured BFGS Secant Method with an Application to Nonlinear Least Squares[J]. Journal of Optimization and Application, 1989, 61(2): 161-178.
  • 10Donoho D L. Compressed sensing[J] . IEEE Trans on Information Theory, 2006, 52(4):1289-1306.

共引文献99

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部