摘要
应急测绘中的无人机调度存在时空环境约束复杂、调度方案多样的特点,现有调度主要以人为经验判断为主,方案粗放不可靠,难以综合考虑应急过程中复杂多变的因素,结果的精准性与可靠性较低。为实现灾后应急测绘的快速响应,提出了一种无人机资源的快速调度方法,综合考虑应急测绘任务需求、优先级、时间窗、作业区域地理环境和无人机测绘资源能力等约束条件,构建了以任务成果收益效率最大化、任务完成率最大化以及调度风险最小化等为多优化目标的应急测绘无人机资源调度模型,并运用蚁群算法实现对模型的求解。实验结果验证了调度方法的有效性。
Unmanned aerial vehicle(UAV)scheduling in emergency surveying and mapping(ESM)has complicated space and time constraints,with diverse scheduling schemes.The existing scheduling methods are generally based on human experience,and not reliable.In order to realize the rapid response of post disaster ESM,a fast scheduling method for UAV resources is proposed.The method comprehensively considers the constraints of the mission requirements,priorities,time windows,the geographical environment of the working area,and the ability of the UAV.A UAV scheduling model for ESM,is proposed that makes mission profit efficiency,mission completion rate,and scheduling risk as optimization objectives.This solution is based on ant colony algorithm.Experimental results verify the effectiveness of the scheduling method.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2017年第11期1608-1615,共8页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金(41471320
41571390
41501463)
四川省测绘地理信息局局科技支撑项目(J2014ZC11)~~
关键词
应急测绘
无人机调度
任务分配
蚁群算法
emergency surveying and mapping
UAV scheduling
mission allocation
ant colony algo-rithm