期刊文献+

基于弹性变形的超声磨削氧化锆陶瓷的粗糙度模型 被引量:3

A Roughness Model of Zirconia Ceramic Based on Elastic Deflection in Ultrasonic Grinding
下载PDF
导出
摘要 针对磨粒突出高度随机分布的特点,结合砂轮型号,建立了磨粒突出高度的正态分布图。通过切削厚度概率密度函数建立了普通磨削和超声磨削的理论切削厚度公式,采用基于弹性变形的接触弧长,结合氧化锆陶瓷的材料特性,计算出基于弹性变形的最大未变形切削厚度。根据磨粒突出高度分布和表面粗糙度的算术平均偏差定义,建立了普通磨削和超声磨削的粗糙度模型。理论研究和实验结果均表明:使用超声磨削改善了工件的表面粗糙度。而该模型可以根据给定材料的性能有效测出其表面粗糙度。由于设计的磨粒形状单一,理论值比实际值小约20%。 According to the characteristic of random distribution of the outstanding height of abrasive and the type of grinding wheel, the figure of normal distribution of the outstanding height of abrasive is set up in this paper. The theory of cutting thickness formula of common grinding and ultrasonic grinding can be estab- lished by probability density function of cutting thickness. Using the contact length influenced by elastic deformation, combined with the material properties of zirconia ceramic, undeformed chip thickness affected by the elastic deformation could be calculated. According to the distribution of the outstanding height of abrasive and arithmetic average deviation definition of surface roughness, roughness model of common grinding and ultrasonic grinding is set up. Theoretical research and experimental results show that ultrasonic grinding improves the surface roughness of workpiece. The model can effectively predict the surface roughness according to the given material properties. Due to the design of single grinding grain shape, the theoretical value is about 20% smaller than the actual value.
作者 李厦 尤佳旗
出处 《组合机床与自动化加工技术》 北大核心 2017年第11期23-27,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(51475310) 教育部高等学校博士学科点专项科研基金(20133120120005)
关键词 磨粒突出高度 弹性变形 氧化锆陶瓷 超声磨削 outstanding height of abrasive elastic deflection zirconia ceramic ultrasonic grinding
  • 相关文献

参考文献2

二级参考文献14

  • 1[2]X.Zhou,F.Xi.Modeling and predicting surface roughness of the grinding process[J].International Journal of Machine Tools & Manufacture,2002,42:969-977.
  • 2[3]S.Malkin.grinding Technology:Theory and Applications of machining With Abrasive,in:Ellis,Horwood,1989.
  • 3[4]李向东.金刚石砂轮磨削参数对陶瓷加工表面粗糙度影响研究[D].天津:天津大学,2005:16-35.
  • 4任敬心,康仁科,史兴宽.难加工材料磨削[M].北京:国防工业出版社,1999:81-86.
  • 5WERNER G. Influence of work material on grinding forces [J].Annals of CIRP, 1978,27(1) : 243-248.
  • 6LI K, LIAO T W.Modeling of ceramic grinding processes part I-number of cutting points and grinding forces per grit[J]. Journal of Material Processing Technology, 1997,65 (1/3) .- 1-10.
  • 7AZARHOUSHANG B, TAWAKOLI T. Development of a novel ultrasonic unit for grinding of ceramic matrix composites [J]. Int J Adv Manuf Teehnol, 2011,57 : 945-955.
  • 8AGARWAL S, VENKATESWARA P.Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding[J].International Journal of Machine Tools 8 Manufacture, 2013,65 .- 68-78.
  • 9闫艳燕,栗成杰,赵波,马辉.二维超声磨削纳米氧化锆陶瓷的磨削力特性研究[J].中国机械工程,2008,19(11):1270-1274. 被引量:23
  • 10柯宏发,张耀辉,赵燕.工程陶瓷磨削表面粗糙度数学模型的研究[J].机械工程师,1998(4):5-6. 被引量:4

共引文献5

同被引文献22

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部