期刊文献+

负载siRNA胶原/生物活性玻璃复合材料的合成

Synthesis of siRNA Loaded Collagen/bioactive Glass Composites
下载PDF
导出
摘要 目的:制备负载siRNA胶原/生物玻璃复合材料,初步探讨胶原/生物活性玻璃复合材料同时作为诱导成骨的支架材料和siRNA缓释体系的可行性。方法:通过冷冻干燥法制备负载siRNA胶原/生物玻璃复合材料,检测支架材料表征、机械性能及降解速率。用SEM、共聚焦显微镜观察MC3T3-E1细胞在支架材料上的粘附和生长情况,通过q-PCR检测从支架释放的siRNA活性。结果:通过冷冻干燥法制备负载siRNA胶原/生物玻璃复合材料观察为海绵状材料,生物活性玻璃均匀分散在胶原材料中,抗压强度较低,孔隙率适宜。第1周时,支架降解率达30.7%。细胞在支架上形成伪足,紧密黏附材料表面,细胞之间连接紧密。从支架中释放siRNA noggin干扰效率16%(P<0.05),差异具有统计学意义。结论:通过冷冻干燥法制备的负载siRNA胶原/生物玻璃复合材料具有良好性能和生物相容性,随着支架降解siRNA从支架中释放,siRNA noggin保持一定活性。 Objective: To prepare siRNA loaded collagen/bioglass composites and to investigate the function of col- lagen/bioactive glass composites, inducing local osteogenesis as well as sustained resealing siRNA. Methods.. The loaded siRNA collagen/bioglass composites were prepared by freeze--drying method. The scaffold material charac- terization, mechanical properties, and degradation rate were evaluated. Micro CT was used to observe the adhesion and growth of MC3T3--E1 in scaffolds. The q--PCR was conducted to detect the activity of siRNA released from the composites. Results: The siRNA loaded collagen/bioglass composites was sponge--like material. Scanning elec- tron microscopy showed that the bioactive glass was evenly dispersed in the collagen material. Compressive strength was low and porosity was appropriate. After the first week, the degradation rate was 30.7%. Cells form pseudo- pods on the material, tightly adhered to the surface of the material. Compared to the control group, the expression of noggin in the experimental group decreased by 16% (P〈0.05), the difference was statistically significant. Con- clusion: The siRNA loaded collagen/bioglass composite material prepared by freeze--drying composites has good performance and biocompatibility. As the scaffold degraded, siRNA released from the composites, and siRNA nog- gin remained partly active.
出处 《口腔医学研究》 CAS 北大核心 2017年第10期1060-1063,共4页 Journal of Oral Science Research
关键词 SIRNA 胶原 生物活性玻璃 siRNA Collagen Bioglass
  • 相关文献

参考文献2

二级参考文献16

  • 1Listgarten MA, Rosenberg MM.Histological study of repair following new attachment procedures in human periondontal lesions. J Periodontol, 1979,50:333-344.
  • 2Hardwick R, Hayes BK, Flynn C. Devices for dentoalveolar regeneration: An up-to-date literature review. J Periodontol, 1995,66(6):495-505.
  • 3Haney JM, Nilvéus RE, McMillan PJ, et al. Periodontal repair in dogs: Expanded polytetrafluoroethylene barrier membranes support wound stabilization and enhance bone regeneration. J Periodontol, 1993,64(9):883-890.
  • 4Sigurdsson TJ, Hardwick R, Bogle GC, et al. Periodontal repair in dogs: Space provision buy reinforced ePTFE membranes enhances bone and cementum regeneration in large supraalveolar defects. J Periodontol, 1994,65(4):350-356.
  • 5Sigurdsson TJ, Tatakis DN, Lee MB, et al. Periodontol regenerative potential of space-providing expanded polytetrafluoroethylene membranes and recombinant human bone morphogenetic proteins. J Periodontol, 1995,66(6):511-521.
  • 6Trombelli L, Lee MB, Promsudthi A, et al. Periodontal repair in dogs: Histologic observations of guided tissue regeneration with a prostaglandin E1 analog/methacrylate composite. J Clin Periodontol, 1999,26(6):381-387.
  • 7Wikesj(o) UME, Lim WH, Thomson RC, et al. Periodontal repair in dogs: Gingival tissue exclusion, a critical requirement for guided tissue regeneration. J Clin Periodontol, 2003,30(7):655-664.
  • 8Kersten BG, Chamberlain ADH, Khorsandi S,et al. Healing of the intrabony periodontal lesion following root condition with critic acid and wound closure including ePTFE membranes. J Periodontol, 1992,63(11):876-882.
  • 9Mellonig JT. Bone allografts in periodontal therapy. Clin Orthop, 1996,324:116-125.
  • 10Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol, 2000, 1999,19:74-86.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部