期刊文献+

基于结构的本体模块化方法 被引量:4

Research on ontology modularization method based on structure
原文传递
导出
摘要 本体模块化是本体融合的关键技术之一.现有的模块化方法有的只考虑了本体中有限的关系的概念、并未考虑其它的逻辑关系;有的对内部概念,涉外概念的定义很难找界定.传统的模块化方法中把所有的谓词看做同一类,忽略了谓语动词对主体的影响差别.为解决以上问题,把本体三元组中的谓词划分为A类谓词和B类谓词,以三元组中的主体以及客体为节点,谓词为边生成本体结构图,然后定义边的权重,将本体模块化问题转换为聚类问题,再结合CH(Calinski Harabasz)聚类评估函数提出了基于本体结构的模块化算法.该方法不但考虑了谓语关系对本体影响的大小,而且把较为模糊的模块化分类转化为明确的聚类问题,更清楚的定义了边界,从而使模块化结果更精确.最后用该方法对Pizza本体划分模块,证明了该算法的有效性和精确性. Ontology modularization is the key technology of ontology fusion. Some of the existing modular methods only consider the concept of limited relations in ontology, and do not consider other logical relations. Some are difficult to find the definition on internal and foreign concepts.The traditional modular approach regards all predicates as the same class, ignoring the difference in the influence of the predicate verbs on the subject. In this paper, the predicates in the ontology tuple are divided into class A predicates and class B predicates.The sub- ject and object in the triplet are used as nodes and the predicates are used as edges,which generates the ontology structure graph.Then the weights of the edges are defined. The ontology modular problem are transformed into clustering problem, and then combining with the CH (Calinski Harabasz) clustering evaluation function to pro- pose a modular algorithm based on the ontology structure.The method not only takes into account the influence of the predicate relation on ontology, but also transforms the vague modular classification into a clear clustering prob- lem.The boundaries are defined more clearly, making the modular results more accurate. Finally, this method is used to divide the Pizza ontology module, which proves the validity and accuracy of the algorithm.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期960-966,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61462049)
关键词 本体 本体模块化 聚类算法 谓语关系 模块化方法 ontology modularization cluster -ring algorithm predicate relation modularization method
  • 相关文献

参考文献2

二级参考文献15

  • 1Bouquet P, Ehrig M, Euzenat J, et al. Specification of a common framework for characterizing alignment [EB/OL]. (2004). http: //www. inrialpes.fr/exmo/cooperation/ kweb/heterogeneity/deli/kweb-221. pdf.
  • 2Melnik S, Molina-Garcia H, Rahm E. Similarity flooding: a versatile graph matching algorithm [C]// Proc of the 18th International Conference on Data Engineering (ICDE 2002). San Jose, California: IEEE Press, 2002: 117- 128.
  • 3TANG Jie, LI Juanzi, LIANG Bangyong, et al. Using Bayesian decision for ontology mapping [J]. Web Semantics : Science, Services and Agents on the World Wide Web, 2006, V4(12): 243- 262.
  • 4ZHANG Dell, LEE Weesun. Web taxonomy integration using support vector machines [C]//Proc of the World-Wide Web Conference (WWW 2004). New York, USA: ACM Press, 2004 : 472 - 481.
  • 5Enrig M, Staab S, Sure Y. Bootstrapping ontology alignment methods with APFEL [C]//Proc of the 4th International Semantic Web Conference (ISWC 2005). Galway, Ireland: ACM Press, 2005:186-200.
  • 6Aleksovski Z, Ten Kate W, Van Harmelen F. Ontology matching using comprehensive ontology as background knowledge [C]//Proc of the 5th International Semantic Web Conference (ISWC 2006). Athens, Georgia, USA: ACM Press, 2006: 13-24.
  • 7Gligorov R, Aleksovski Z, Ten Kate W, et al. Using google distance to weight approximate ontology matches [C]// Proc of the World-Wide Web Conference (WWW 2007). Banff, Alberta, Canada: ACM Press, 2007: 767- 776.
  • 8Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 9Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 10Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.

共引文献113

同被引文献33

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部