期刊文献+

CSL代数上在单位元Ⅰ点Jordan高阶可导的映射

Jordan Higher Derivable Maps at Ⅰ on CSL Algebras
下载PDF
导出
摘要 设L是希尔伯特空间H上的一个CSL,AlgL是相应地CSL代数。一族线性映射δ_={δ_n,δ_n:AlgL→AlgL,n∈N}在Ω∈AlgL Jordan高阶可导,如果对所有n∈N,∑[δ_i(A)δ_j(B)+δ_j(B)δ_i(A)]=δ_(Ω),其中A,B∈AlgL,AB+BA=Ω。本文给出了一族线性映射δ_={δ_n:AlgL→AlgL}在单位元I点Jordan高阶可导的充要条件。利用此结果证明了不可约CDCSL代数,因子von Neumann代数上的套子代数(特别地,希尔伯特空间套代数)到其自身的一族线性映射δ_={δ_n,n∈N}在I点Jordan高阶可导当且仅当它是一个高阶导子。 Let L be a CSL on a Hilbert space H and AlgL be the associated CSL algebras. We say that a family of linear maps δ_ ={δ_n,δ_n:AlgL → AlgL,n ∈ N} is Jordan higher derivable at Ω ∈ AlgL if∑i + j = n[δ_]i(A)δ_j(B)+ δ_j(B)δ_i(A) = δ_(Ω) for all n ∈ N, A,B ∈ AlgL with AB + BA = Ω. In this paper, we give a necessary and sufficient condition for a family of linear maps δ_ ={δ_n,AlgL → AlgL,n ∈ N} to be Jordan derivable at I. As its application, we show that a family of linear maps δ_ ={δ_n,n ∈ N} from an irreducible CDCSL algebra or a nest subalgebra of a factor von Nuemann algebra(in particular, a Hilbert space nest algebra)into itself, which is Jordan higher derivable at I is a higher derivation.
出处 《科技通报》 北大核心 2017年第11期27-29,81,共4页 Bulletin of Science and Technology
基金 贵州省省级本科教学工程项目(GZSJG10977201608) 贵州省教育厅自然科学研究项目(黔教合KY字[2016]271号) 六盘水师范学院自然科学研究计划项目(LPSSY201503)
关键词 JORDAN导子 CSL代数 CDCSL代数 套代数 von NEUMANN代数 Jordan derivations CSL algebras CDCSL algebras nest algebras von Neumann algebras
  • 相关文献

参考文献2

二级参考文献12

  • 1F.Lu.The Jordan structure of CSL algebras [J]. Stud.Math, 2009, (190) : 283-299.
  • 2W. Jing,J.Lu and P.Li.Characterizations of derivations on some operator algebras [J].Bull.Austral. Math.Soc, 2002, (66) : 227-232.
  • 3J.Li, J.Zhou.Characterizations of Jordan derivation and Jordan homomorphisms [J].Lin.Mult. Alg,2001, (59): 193-204.
  • 4F.Lu.Jordan derivable maps of ptime tings[C]. Commun.In.Alg,2010, ( 32 ) : 4430-4440.
  • 5R.An, J.Hou.Characterizations of Jordan deriv- ation on triangular rings:addi tire maps Jordan deriv- able at idempotents[J].Electronic Journal of Linear Al- gebra, 2010, (21) :28-42.
  • 6F.Gilfeather, A.Larson.Nest subalgebras of von Neumann algebras [J].Advances in Mathematics, 1982, (46): 171-199.
  • 7F. Gilfeather, A. Larson. 1982.Nest subalgebras ofvon Neumann algebras[J]. Advances in Mathematics, (46) : 171-199.
  • 8F. Lu. 2009.The Jordan structure of CSL algebras[J]. Stud. Math. (190) :283-299.
  • 9F. Lu. 2010. Jordan derivable maps of prime rings[C]. Commun. In. Alg, (32):4430-4440.
  • 10j. Li, j. Zhou. 2001. Characterizations of Jordan derivation and Jordan homomorphisms[J]. Lin. Mult.Alg, (59): 193-204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部