摘要
路基强度检测有利于确保公路路基路面质量,延长公路路面路基的使用寿命,为了提高路基强度检测的精度,本文提出了一种基于自适应细分模量的路基强度检测模型。首先根据FWD实测弯沉盆进行路面结构层模量反算,将其转化为一个多变量单目标优化问题,然后提出了根据信息量大小来确定算法是否进行自适应细分模量解空间的机制,缩小算法后期反算中的搜索空间。算法实例仿真实验结果表明,本文提出的改进算法相比较标准遗传算法具有较好的收敛性,并且在路基强度检测中误差较小。
Subgrade strength testing is beneficial to ensure the quality of the highway roadbed, prolong the service life of pavement subgrade, in order to improve the accuracy of subgrade strength testing, this paper puts forward a kind of based on adaptive subdivision modulus of subgrade strength detection model. FWD is first of all, according to the measured deflection basin in pavement structure layer, the back calculation of modulus is transformed into a multi-variable single objective optimization problem,and then put forward according to the volume of information to determine whether the algorithm for adaptive subdivision modulus of the mechanism of solution space, reducing the searching space algorithm of inverse calculation of late. Algorithm instance simulation experiment results show that the proposed algorithm compared with standard genetic algorithm has good convergence, and the error is smaller in the subgrade strength testing.
出处
《科技通报》
北大核心
2017年第11期233-236,共4页
Bulletin of Science and Technology
关键词
自适应优化
细分模量
路基强度
模量反算
单目标优化
路基质量检测
adaptive optimization
breakdown modulus
strength of subgrade
modulus back calculation
single objective optimization
roadbed quality testing