期刊文献+

基于改进Harris-SURF算子的遥感图像配准算法 被引量:1

Remote Sensing image registration based on the Harris-SURF algorithm
下载PDF
导出
摘要 针传统SURF算法在遥感图像配准中存在精度和准确率不高的问题,提出基于改进的Harris-SURF图像配准方法。利用高斯二阶导数与原始图像进行卷积,提取具有尺度不变的特征值点,对Harris算法不具备尺度不变性进行改进,利用仿射变化提高配准的精度。最后,利用RANSAC算法剔除配准错误点,完成配准。 To tackle the problems of low accuracy and accuracy in Remote Sensing image registration form traditional SURF algorithm,this paper proposes an improved Harris-SURF algorithm of image registration.The Gaussian second derivative is used to convolve with the original image to extract the scale-invariant feature points. Improving Harris algorithm which does not have scale invariance, the accuracy of registration is improved by affine transformation.At last, the RANSAC algorithm is used to eliminate the registration error points.
出处 《信息通信》 2017年第11期9-10,共2页 Information & Communications
基金 宁夏高等学校科学技术研究项目(NGY2014007) 国家自然科学基金项目(61461044)
关键词 遥感图像配准 多尺度Harris算子 SURF算法 Remote Sensing image registration multi-scale Harris operator SURF algorithm
  • 相关文献

参考文献2

二级参考文献20

  • 1姜晓彤,罗立民,赵正旭.一种改进的基于互信息和梯度特征的图像配准方法的研究[J].仪器仪表学报,2006,27(9):1141-1146. 被引量:20
  • 2J P W Pluim,J B A Maintz,M A Viergever.Image registration by maximization of combined mutualinformation and gradient information[J].IEEE Trans.Med.Imag,2000,19(8):809-814.
  • 3Jae Hak Lee,Yong Sun Kim,Duhgoon Lee,et al.Jong Beom Ra Robust CCD and IR image registration using gradient-based statistical information[J].IEEE Signal Processing Letters,2010,17(4):347-350.
  • 4Studholme C,Hill D Lg,Hawkes D J.An overlap invariant entropy measure of 3D medical image aligment[J].Pattern Recognition,1999,32(1):71-86.
  • 5L Rudin,S Osher,E Fatemi.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268.
  • 6MIKOLAJCZYK K, SCHMID C. A Performance Evaluation of Local Descriptors[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2003, 2:257-263.
  • 7YAN K, SUKTHANKAR R. PCA-SIFF: a more distinctive representation for local image descriptors [ C]//Proceedings of the Computer Vision and Pattern Recognition, IEEE Computer Society Conference on. IEEE, 2004:506-513.
  • 8DUAN C, MENG X X, TU C H, et al. How to make local image features more efficient and distinctive [J].IET Comoutcr. Vision. 2008. 2(3 ) : 178-189.
  • 9ETHAN R, VINCENT R, KURT K, et al. ORB : an effi- cient alternative to SIFT or SURF [ C ]//IEEE Interna- tional Conference on Computer Vision, 2011:1-8.
  • 10LOWED G. Object recognition from local scale-invariant features[ C ]//In Proceedings. of the International Con- ference on Computer Vision, 1999 : 1150-1157.

共引文献18

同被引文献9

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部