期刊文献+

基于变分自动编码器的动态主题模型 被引量:3

Dynamic topic model based on variational autoencoder
下载PDF
导出
摘要 传统动态主题模型的后验分布推断需要复杂的推理过程,仅模型假设的细微变化就需要重新进行推断,时间成本较高,制约了模型的可变性和通用性。为了提高动态主题模型的性能,提出了基于变分自动编码器融合动态因子图进行推断的动态主题模型。该模型对变分下界进行再参数化,生成一个下界估计器,将隐变量转换为一组辅助参数,使得新的参数不依赖于变分参数,用标准随机梯度下降法直接优化变分目标,同时融合动态因子图对状态空间模型进行建模,弱化推断的概率特性,简化优化过程,实现有效的推断。结果表明,提出的模型不仅保证了准确性,而且其简化模型有效降低了推断的时间成本,从而为动态主题模型能有效应用于复杂的时间场景提供更多可能。 The posterior distribution of traditional dynamic topic model requires complex reasoning process,and a small change in model assume will require re-deduction,meanwhile with high time cost,which restricts the variability and generality of the model.A dynamic topic model based on variational autoencoder fusing with dynamic factor graph for inference is proposed in order to improve the performance of dynamic topic model.The model makes a reparameterization trick to evidence lower bound to generate a lower estimator,and converts the hidden parameters to a group of auxiliary parameters,which makes new parameters not depend on variational parameters;standard stochastic gradient descent method can be available to variational objective function directly.At the same time,integrating the dynamic factor graph on modeling the state space model weakens the probabilistic of the model,simplifies the optimization process,and makes effective inference.The experimental results show that this model guarantees the accuracy,and the simplified model reduces the time cost effectively,which will provide more possibilities for dynamic topic model to be applied to complex time scenarios effectively.
出处 《河北工业科技》 CAS 2017年第6期421-427,共7页 Hebei Journal of Industrial Science and Technology
基金 江苏省研究生科研与实践创新计划项目(KYCX17_0486) 中央高校基本科研业务费专项资金(2017B708X14) 福建省信息处理与智能控制重点实验室(闽江学院)开放课题(MJUKF201740)
关键词 计算机神经网络 动态主题模型 变分自动编码器 动态因子图 参数 neural network dynamic topic model variational autoencoder dynamic factor graph parameter
  • 相关文献

参考文献4

二级参考文献63

  • 1李国,穆国旺,睢佰龙.基于生物启发特征与PCA-LDA的人脸识别方法[J].河北工业大学学报,2013,42(5):80-83. 被引量:2
  • 2张莉.网络人际交往中的信任产生机制[J].重庆图情研究,2006,7(2):27-29. 被引量:7
  • 3段锦.人脸自动机器识别[M].北京:科学出版社,2009:88-103.
  • 4何明升,白淑英.虚拟世界与现实世界[M].北京:社会科学文献出版社,2011.274-275.
  • 5罗婷婷,范太华.支持向量机核函数及优化研究[J].兵工自动化,2007,26(10):34-35. 被引量:3
  • 6Blei D M. Probabilistic topic models. Communica- tions of the ACM, 2012, 55(4): 77-84.
  • 7Blei D M, Carin L, Dunson D. Probabilistic topic models. Signal Processing Magazine, IEEE, 2010, 27(6): 55-65.
  • 8Blei D M, Lafferty J D. Dynamic topic models // Proceedings of the 23rd International Conference on Machine learning. Pittsburgh, 2006:113 -120.
  • 9Ramage D, Hall D, Nallapati R, et al. Labeled LDA: a supervised topic model for credit attribution in multi- labeled corpora//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics, 2009:248-256.
  • 10中国科学院自动化研究所“自动化学科创新思想与科学方法研究”课题(编号:2009IM020300)[DB/OL].(2012-01)[2014-06].http://www.datatang.com/Member/UserData.aspx?id.5878.

共引文献21

同被引文献11

引证文献3

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部