摘要
利用"Green函数法"和"镜像法"对在SH波作用下半空间双相压电介质垂直边界附近圆形夹杂的动态性能进行分析,得到其稳态响应。利用镜像法得到满足水平边界应力自由与电位移自由的波函数解析表达式。根据垂直边界连续性条件,利用"契合法"建立第一类Fredholm型积分方程组,得到圆形夹杂周边的动应力集中系数与电场强度系数解析表达式。数值算例分析了入射波频率、入射角度、圆形夹杂位置等对动应力集中系数与电场强度系数的影响,并与已有文献进行比较。
The dynamic performance of circular inclusion near the vertical boundary in the piezoelectric bi-material half-space under the action of SH wave was analyzed by using the Green function method and mirror method to obtain the steady state responses. An analytical expression of the wave function which satisfies the stress free and electric displacement free on the horizontal boundaries was obtained by the mirror method. According to the continuity condition on the vertical boundary,the first kind of Fredholm integral equations was established to obtain the analytical expressions of the dynamic stress concentration factor and electric field intensity concentration factor around the edges of circular inclusions by the conjunction method. The influences of the frequencies of incident wave,the incident angle and the position of circular inclusions,etc. on the dynamic stress concentration factor and electric field intensity concentration factor were analyzed and compared with the results in the calculation examples of existing literatures.
出处
《振动与冲击》
EI
CSCD
北大核心
2017年第21期77-84,共8页
Journal of Vibration and Shock
基金
黑龙江省自然科学基金(A201404)
关键词
半空间
双相压电介质
圆形夹杂
SH波
动应力集中系数
电场强度集中系数
half space
piezoelectric bi-material
circular inclusion
SH wave
dynamic stress concentration factor (DSCF)
electric field intensity concentration factor ( EFICF)