期刊文献+

基于半监督判别最大熵模糊聚类算法

Semi-supervised Discriminative Fuzzy Maximum Entropy Clustering Algorithm with Pairwise Constraints
下载PDF
导出
摘要 为了解决大量高维数据分类的问题,给出一种基于半监督判别最大熵模糊的聚类算法.该算法不仅继承了已有FLDA-MEFCA算法的降维优势,而且可以充分利用监督信息来提高聚类性能.实验证明该算法的总体性能优于最大熵模糊聚类算法、FLDA-MEFCA和经典FCM类算法. In order to solve the problem of classifying large number of multi-dimensional data,one semi-supervised discriminative fuzzy maximum entropy clustering algorithm with pairwise constraints is proposed in this paper.This algorithm not only inherits the advantages of the dimension reduction of FLDA-MEFCA,but also can take advantage of supervised information to improve the performance of clustering.Experiments show that the overall performance of the proposed algorithm is superior to Maximum Entropy Fuzzy Clustering Algorithm(MEFCA),FLDA-MEFCA and classical FCM clustering algorithm.
作者 麦晓冬 MAI Xiao-dong(College of Information Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China)
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2017年第5期763-766,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 广东省高等学校优秀青年教师培养计划(YQ2015172)
关键词 模糊聚类 降维 判别聚类 半监督聚类 成对约束 fuzzy clustering dimension reduction discriminant clustering semi-supervised cluste-ring pairwise constraints
  • 相关文献

参考文献2

二级参考文献22

  • 1普运伟,金炜东,朱明,胡来招.核模糊C均值算法的聚类有效性研究[J].计算机科学,2007,34(2):207-210. 被引量:28
  • 2Grira N, Crucianu M, Boujemaa N. Active semi supervised fuzzy clustering [J]. Pattern Recognition, 2008, 41(5) : 1834-1844.
  • 3Basu S, Banerjee A, Mooney R J. Active semi supervision for pairwise constrained clustering[C]. Proc of the 4th SIAM Int Conf on Data Mining. Florida: SIAM, 2004: 333-344.
  • 4Lu Z, Carreira-Perpinan M A. Constrained spectral clustering through affinity propagation[C]. IEEE Conf on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
  • 5Yan R. Zhang J, Yang J, et al. A discriminative learning framework with pairwise constraints for videoobject classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence. 2006, 28(4) : 578- 593.
  • 6Pedryez W, Amato A. Lecce V D, ct al. Fuzzy clustering with partial supervision in organization and classification of digital images[J]. IEEE Trans on Fuzzy Systems, 2008, 16(4): 1008-1026.
  • 7Wagstaff K, Cardie C. Cluslering with Instance-level Constraints[C]. Proc of the 17th Int Conf on MachineLearning. San Francisco: Morgan Kaufmann Publishers Inc, 2000:1103- 1110.
  • 8Frigui H, Krishnapuram R. CLustering by competitive agglomcration[J]. Pattern Recognition, 1997, 30(7): 1109-1119.
  • 9Bezdek J C, Ehrlich R. Full W. FCM: The fuzzy C-cluslering algorithm [ J ]. Computer Geuscience, 1984, 10(2/3): 191-203.
  • 10Grira N, Crucianu M, Boujemaa N. Fuzzy clustering with pairwise constraints for knowledge-driven image calegorization[J]. IEE Proc Vision, lmage and Signal Processing, 2006, 153(3): 299 -304.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部