期刊文献+

云计算技术下的数据挖掘平台建构探讨 被引量:3

Discussion on the construction of data mining platform based on Cloud Computing Technology
原文传递
导出
摘要 在于探讨云计算技术下数据挖掘平台的建构问题。基于我国当网络技术的不断发展,本文基于云计算技术,数优化建构数据挖掘平台,并对平台的架构以及关键技术进行具体的建构分析。结果中证实,在实际中能够运用云计算技术,建构出数据挖掘平台,不仅在数据挖掘过程中有助于突破传统数据挖掘的性能瓶颈,使用云计算技术处理大数据集,还可提高数据挖掘的效率,提升42.0%,发挥积极应用效益。结论表明,建构基于云计算技术下的数据挖掘平台,发挥积极影响,可在实践中推广该数据挖掘平台建构方案。 The purpose of this paper is to explore the construction of data mining platform under the cloud computing technology. Based on the continuous development of network technology in China, this paper, based on cloud computing technology, data mining platform to optimize the number of the platform, and the architecture of the platform and the key technology to do a detailed analysis. The results confirm that using cloud computing technology, optimizing the construction of data mining platform, improve data mining helps to break through the bottleneck of traditional data mining, using cloud computing technology to handle large data sets, improve the efficiency of data mining,lifting 42. 0%, play a positive effect in application. The conclusion shows that the construction of data mining platform based on cloud computing technology can play a positive impact, which can promote the construction of the data mining platform in prac- tice.
作者 石雷
出处 《自动化与仪器仪表》 2017年第11期59-60,63,共3页 Automation & Instrumentation
关键词 平台建构 数据挖掘平台 云计算 信息化 platform construction data mining platform cloud computing information technology
  • 相关文献

参考文献11

二级参考文献80

  • 1刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006,19(1):65-68. 被引量:15
  • 2宋晓云,苏宏升.一种并行决策树学习方法研究[J].现代电子技术,2007,30(2):141-144. 被引量:4
  • 3王继业.电力企业数据中心建立及其对策[J].中国电力,2007,40(4):69-73. 被引量:22
  • 4Weiss A. Computing in Clouds[ J]. ACM Networker,2007,11 (4) : 18-25.
  • 5Buyya R, Yeo C S, Venugopal S. Market-Oriented Cloud Computing : Vision, Hype, and Reality for Delivering IT Services as Computing Utilities[ C ]//Proceedings of the 2008 10^th IEEE International Conference on High Performance Computing and Communications. [ s. l. ] : [ s. n. ] ,2008 : 5-13.
  • 6Apache. Hadoop [ EB/OL]. 2006. http://lucene, apache. org/hadoop/.
  • 7Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters [ C ]//Proceedings of the 6th Symposium on Operating System Design and Implementation. San Francisco, California, USA : USENIX Association, 2004 : 137-150.
  • 8Wu X, Kumar V, Ghosh R J, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems,2008,14 (1) :1-37.
  • 9Agrawal R, Sharer J C. Parallel Mining of Association Rules [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 ( 6 ) : 962- 969.
  • 10Aflori C, Craus M. Grid implementation of the Aprioti algorithm[ J]. Engineering Software,2007, 38( 5): 295-300.

共引文献449

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部