期刊文献+

基于卷积神经网络的作战目标识别方法的研究 被引量:7

Research on Target Recognition Method Based on Convolutional Neural Network
下载PDF
导出
摘要 在当前复杂多变的战场环境下,采用传统的目标识别手段存在成本高、识别率低、难以快速定位目标等问题,亟需一种成本低、识别率高的识别手段。为此提出一种战场目标识别方法,首先对连续拍摄且拍摄时有抖动的图像进行预处理以降低拍摄图像时抖动产生的影响,之后再基于卷积神经网络(Convolutional Neural Networks,CNN)改进模型实现对战场目标的识别。实验结果表明,基于改进的CNN模型的方法可以取得较高的战场目标识别准确率。 In the complex and changeable battlefield environment, traditional target recognition methods have some problems, such as high cost, low recognition rate and difficult to locate target quickly. Therefore, a low-cost and high recognition method is needed. This paper presents a target recognition method in the battlefield. Firstly, the continuous shooting image and the jittered shooting image are pre-processed to reduce the impact of jitter when captu- ring an image, then based on improved convolutional neural network (CNN) model, the recognition of battlefield tar- gets is achieved. Experimental resuhs show that the method based on improved CNN model can achieve higher recog- nition accuracy of battlefield target than traditional methods.
作者 谭景信 洪岩 孟德地 张军尧 TAN Jing-xin;HONG Yan;MENG De-di;ZHANG Jun-yao(The 15th Research Institute of China Electronic Technology Group Corporation, Beijing 100083, China)
出处 《计算机仿真》 北大核心 2017年第11期12-15,113,共5页 Computer Simulation
关键词 深度学习 图像抖动处理 卷积神经网络 目标识别 Depth learning Image dithering processing Convolutional neural network Object recognition
  • 相关文献

参考文献6

二级参考文献53

  • 1刘明,赵跃进,周渝斌.电子稳像中的运动补偿矢量处理方法的研究[J].光学技术,2005,31(3):457-459. 被引量:3
  • 2许联锋,廖伟丽,陈刚,李建中.稀疏气泡流动的粒子跟踪测速技术研究[J].水利学报,2005,36(7):825-829. 被引量:7
  • 3汪小勇,李奇,徐之海,冯华君,陈跃庭.用于实时数字稳像的灰度投影算法研究[J].光子学报,2006,35(8):1268-1271. 被引量:28
  • 4Engelsberg A, Schmidt G. A comparative review of digital image stabilising algorithms for mobile video communications [J ]. IEEE Transactions on Consumer Electronics, 1999, 45(3) :591 - 597.
  • 5Ko S J, Lee S H, Jeon S W, et al. Fast digital image stabilizer based on gray - coded bit - plane matching [ J ]. IEEE Transaction on Consumer Electronics, 1999,45 ( 3 ) : 598 - 603.
  • 6Vella F, Castorina A, Mancuso M, et al, Digital image tabilization by adaptive block motion vectors filtering.IEEE Trans on Consumer Electronics, 2002,48 (3) : 796-801.
  • 7Joon Ki Paik, Yong Chul Park, Dong Wook Kim. An adaptive motion decision system for digital image stabilizer based on edge pattern matching. IEEE Trans on Consumer Electronics, 1992,38(3) :607-616.
  • 8Sung Jea Ko,Sung Hee Lee,Seung Won Jeon,et al. Fast digital image stabilizer based on gray-coded bit-plane matching. IEEE Trans on Consumer Electronics, 1999,45(3): 598-603.
  • 9LIU G, SUN X, FU K, et al. Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior[J]. Geoscience and Remote Sensing Let- ters, 2013, 10(3): 573-577.
  • 10FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine learning, 1997, 29(2-3): 131-163.

共引文献197

同被引文献70

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部