期刊文献+

关于古建筑图像中破损点优化提取仿真 被引量:1

Simulation and Optimization of Broken Points in Ancient Architecture Images
下载PDF
导出
摘要 对古建筑图像中对破损点的优化提取,对古建筑后续原貌恢复具有重要意义。对图像破损点的提取,需要获得破损点分量特征信息,计算图像的破损点超像素级视觉特征,完成图像中破损点优化提取。传统方法保留破损图像关键区域特征点,删除古建筑图像背景区域特征点,但忽略了计算图像的破损点超像素级视觉特征,导致提取精度偏低。提出基于小波阈值自适应修正的古建筑图像破损点提取方法。基于RAC约束的两步法来标定系统,对图像进行灰度化转换,进行图像的边缘检测和小波降噪处理,对小波降噪提纯后的古建筑图像进行破损点深度超像素特征分割,获得破损点分量特征信息,计算图像的破损点向量量化区域的超像素级视觉特征,实现破损图像破损点提取优化。仿真证明,所提方法从视觉对比和量化分析的角度实现了破损区域的轮廓分割与检测,破损点提取效果优越。 An extraction method for image breakage point of ancient architecture is proposed based on adaptive correction of wavelet threshold. Firstly, the system based on two-step method of RAC constraint is calibrated and im- age gray transformation is carried out. Then, image edge detection and wavelet denoising is conducted, and the super pixel feature of breakage point depth of ancient architectural buildings after wavelet denoising is segmented to obtain feature information of breakage point. Finally, the super pixel visual feature of quantization region of breakage point vector of image is calculated and the extraction optimization of breakage point for breakage image is realized. Simula- tion results show that the mentioned method achieves contour segmentation and detection of breakage area from visual contrast and quantitative analysis, and has good breakage point extraction performance.
作者 高华 GAO Hua(Tourism College of Changchun University, Changchun Jilin 130607, China)
出处 《计算机仿真》 北大核心 2017年第11期377-380,共4页 Computer Simulation
基金 吉林省教育厅"十三五"社会科学研究规划项目(吉教科文合字JJKH20171024SK)
关键词 古建筑 图像破损点 优化提取 Ancient architectural buildings Image breakage point Optimization extraction
  • 相关文献

参考文献10

二级参考文献89

  • 1郎波,黄静,危辉.利用多层视觉网络模型进行图像局部特征表征的方法[J].计算机辅助设计与图形学学报,2015,27(4):703-712. 被引量:10
  • 2Simonetto E,Oriot H,Garello R.Rectangular building extraction from stereoscopic airborne radar images[J].IEEE Trans on Geoscience and Remote Sensing,2005,43(10):2386-2395.
  • 3Soergel U,Michaelsen E,Thiele A,et al.Radargrammetric extraction of building features from high resolution multi-aspect SAR data[C]//Proc of IEEE International Conference on Geoscience and Remote Sensing Symposium.2006:3635-3638.
  • 4Jain A K,Farrokhnia F.Unsupervised texture segmentation using Gabor filters[C]//Proc of IEEE International Conference on Systems,Man and Cybernetics.1990:14-19.
  • 5Rousselet G A, Thorpe S J, Fabre-Thorpe M. How paral- lel is visual processing in the ventral pathway. Trends in Cognitive Sciences, 2004, 8 (8) : 363-370.
  • 6Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 1999, 10(3) : 626-634.
  • 7Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2 (11) : 1019-1025.
  • 8Connor C E, Brincat S L, Pasupathy A. Transformation of shape information in the ventral pathway. Current Opinion in Neurobiology, 2007, 17(2) : 140-147.
  • 9Kavukcuoglu K, Ranzato M A, Fergus R, et al. Learning invariant features through topographic filter maps. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Ameri- ca, 2009. 1605-1612.
  • 10Yang J, Yu K, Huang T. Supervised translation-invariant sparse coding. In: Proceedings of the International Con- ference on Computer Vision and Pattern Recognition (CVPR), San Francisco, America, 2010. 3517-3524.

共引文献123

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部