摘要
提出一种基于非线性收敛因子的改进鲸鱼优化算法(简记为IWOA)用于求解大规模复杂优化问题.为算法全局搜索奠定基础,在搜索空间中利用对立学习策略进行初始化鲸鱼个体位置;设计一种随进化迭代次数非线性变化的收敛因子更新公式以协调WOA算法的探索和开发能力;对当前最优鲸鱼个体执行多样性变异操作以减少算法陷入局部最优的概率.选取15个大规模(200维、500维和1000维)标准测试函数进行数值实验,结果表明,IWOA在求解精度和收敛速度方面明显优于其他对比算法.
An improved whale optimization algorithm (WOA) based on nonlinear convergence factor, named IWOA, is proposed for solving large scale complicated optimization problems. In the proposed algorithm, opposition-based learning strategy is used to initial the whale individuals' position in the search space, which strengthened the diversity of individuals in the global searching process. A novel nonlinearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation. It then disturbed the current optimal individual by diversity mutation operator in the process of the search so as to avoid the possibility of falling into local optimum. Simulation experiments were conducted on the 15 large scale (200, 500, and 1000 dimension) conventional test functions. The experimental results show that the proposed IWOA has better performance in solution precision and convergence rate than other comparison methods.
作者
龙文
蔡绍洪
焦建军
唐明珠
伍铁斌
LONG Wen;CAI Shaohong;JIAO Jianjun;TANG Mingzhu;WU Tiebin(Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550025, China;School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China;School of Energy and Power Engineering, Changsha University of Science and Engineering, Changsha 410114, China;School of Energy and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China)
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2017年第11期2983-2994,共12页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(61463009
61403046)
贵州省科学技术基金(黔科合基础[2016]1022)
商务部与贵州财经大学联合基金(2016SWBZD13)
湖南省自然科学基金(2016JJ3079)~~
关键词
鲸鱼优化算法
对立学习策略
非线性收敛因子
大规模优化问题
多样性变异
whale optimization algorithm
opposition-based learning strategy
nonlinear convergence fac-tor
large scale optimization problem
diversity mutation