期刊文献+

自由边界钎料形状对钎焊结构残余应力的影响研究

Investigation of residual stresses distributions with free boundary shape of solder joint in brazing seal
下载PDF
导出
摘要 钎料形状是影响钎焊接头残余应力分布的关键因素,已有研究主要是针对理想钎料形状下的残余应力开展的,但针对钎料自由边界形状下的残余应力,少有文献进行相关报道。为探讨二者相互关系,本研究对它们开展了仿真及试验测量。首先对凝固后的自由边界钎料形状进行测量分析,然后利用流体动力学方法对钎料自由界面进行追踪仿真,结果表明:基于流体体积法追踪自由界面,可得到与试验测量较吻合钎料形状。在获得钎料自由边界形状基础上,对钎缝残余应力进行测量分析,并利用有限元方法对残余应力进行仿真计算,结果表明,相对理想钎料形状,自由边界钎料形状下的残余应力与试验测量数据更吻合。本研究结果对于钎焊结构的优化改进提供了更真实的依据。 Bonded dissimilar materials or reinforced ceramic composites, as well as their strengthening and failure mechanisms, had been a topic of growing interest from the past decades to the present. The solder joint shapes were important concern for the residual stress distributions. Many researches had been carried out theoretically and experimentally. These researches give the residual stress distributions with the ideal solder joint shape in the brazing seal.However, actual solder joint shape in these seal systems were rarely considered. For the sake of understanding characteristics of the residual stress distributions more accurately, computational fluid dynamics technique was used to predict the actual solder joint shape. Furthermore, the residual stress distributions resulted from the actual solder solidification behavior were investigated by experimental observation and finite element simulation. The residual stress distributions produced from the actual solder joint were more identical with the experimental results.
作者 张国亮 钟伟
出处 《焊接技术》 2017年第10期7-11,共5页 Welding Technology
基金 国家自然科学基金青年科学基金项目(51604251)
关键词 残余应力分布 钎料形状 流体动力学 residual stress distributions solder joint shape fluid dynamics
  • 相关文献

参考文献4

二级参考文献30

  • 1李绍武,尹振军.N-S方程的数值解法及其在水波动力学中应用的综述[J].海洋通报,2004,23(4):79-85. 被引量:13
  • 2谷汉斌,李炎保,李绍武,张庆河.界面追踪的Level Set和Particle Level Set方法[J].水动力学研究与进展(A辑),2005,20(2):152-160. 被引量:16
  • 3黄萍.焊点的失效模式与分析[J].电子工艺技术,2006,27(4):205-208. 被引量:15
  • 4Zhao P S, Wu C S, Zhang Y M. Numerical simulation of dynamic characteristics of weld pool peometry with step changes of welding paramneters [J]. Modeling and Simulation in Materials Science and Engineering, 2004, 12(7) :765 - 780.
  • 5Wu C S, Zhao P S, Zhang Y M. Numerical simulation of transient 3-D surface deformation of full-peretrated GTA weld pool[J]. Welding Journal, 2004, 83(12) : 330- 335.
  • 6Lei Y P, Murakawa Hidekazu, Shi Y W, et al. Ntumerical analysis of the competitive influence of marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remehing [J]. Computational Material Science, 2001, 21(3) : 276 - 290.
  • 7Choo R T C, Szedely J. The possible role of turbulence in GTA weld pool behavior [J]. Welding Journal, 1994, 73(2) : 25s - 31s.
  • 8Kim S D, Na S J. Effect of weld pool deformation on Weld penetration in stationary gas tungsten arc welding [ J ]. Welding Journal, 1992, 71(4): 179- 193.
  • 9Hirt C W,Nichols D B.Volume of fluid method forthe dynamics of free boundaries[J].Journal of Com-putational Physics,1981,39:201-225.
  • 10Ashgriz N,Poo J Y.Flux line-segment model for ad-vection and interface reconstruction[J].Journal ofComputational Physics,1991,93:273-285.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部