期刊文献+

大规模隐式反馈的词向量音乐推荐模型 被引量:3

Implicit Music Recommender Based on Large Scale Word-Embedding
下载PDF
导出
摘要 现有音乐推荐系统在大规模隐式反馈场景下存在推荐困难的问题,提出大规模隐式反馈的词向量音乐推荐模型(Word-Embedding Based Implicit Music Recommender).本模型借鉴了自然语言处理领域的Word2Vec技术,通过学习用户音乐收藏播放记录里的歌曲共现信息,获得用户、音乐在分布式空间的低维、紧致的向量表示,从而得到用户、音乐之间的相似度进行推荐,并且在理论上论述了Word2Vec技术应用在推荐系统上的正确性.该模型在保证准确率和召回率几乎不变的同时,收敛速度快,占用内存小,试验结果表明该模型有效的解决了大规模隐性反馈场景下音乐推荐困难的问题. A large scale word-embedding based implicit music recommender is proposed to address the problems that most of current recommendation systems cannot work in the scenario of large scale implicit feedback recommendation.This model employs the Word2 Vec technique which is popular in Natural Language Processing in recent years. By learning the songs co-occurrences in the users' history collections, we can get the distributed representation of users and songs with a low-dimension and dense vector. In this way, we can get the similarities of users and songs which could be used for the recommendation and we also analyze the correctness of application of Word2 Vec technique in recommendation. This model can effectively solve the problem mentioned above with the accuracy remaining the same.In addition, this model can converge faster and take less memory than those of traditional methods.
出处 《计算机系统应用》 2017年第11期28-35,共8页 Computer Systems & Applications
关键词 词向量 协同过滤 推荐算法 Word2Vec 深度学习 word-embedding collaborative filtering recommendation algorithm Word2Vec deep learning
  • 相关文献

参考文献2

二级参考文献17

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2MCNEE S M,RIEDL J,KONSTAN J A.Being accu-rate is not enough:how accuracy metrics have hurtrecommender systems[C]∥Proceedings of the ACMSIGCHI Conference on Human Factors in ComputingSystems.New York,NY,USA:ACM,2006:1197-1101.
  • 3HERLOCKER J L,KONSTAN J A,TERVEEN LG,et al.Evaluating collaborative filtering recommen-der systems[J].ACM Transactions on InformationSystems,2004,22(1):5-53.
  • 4ADOMAVICIUS G,TUZHILIN A.Toward the nextgeneration of recommender systems:a survey of thestate-of-the-art and possible extensions[J].IEEETransactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 5BALABANOVIC M,SHOHAM Y.Fab:content-based,collaborative recommendation[J].Communica-tions of ACM,1997,40(3):66-72.
  • 6ADOMAVICIUS G,KWON Y.Improving aggregaterecommendation diversity using ranking-based Tech-niques[C]∥Proceedings of the IEEE Transactions onKnowledge and Data Engineering.Piscataway,NJ,USA:IEEE,2011:1-15.
  • 7CREMONESI P,KOREN Y,TURRIN R.Perform-ance of recommender algorithms on TopN recommen-dation tasks[C]∥Proceedings of the 4th ACM Con-ference on Recommender Systems.New York,NY,USA:ACM,2010:39-46.
  • 8BRADLEY K,SMYTH B.Improving recommendationdiversity[C]∥Proceedings of the 12th Irish Confer-ence on Artificial Intelligence and Cognitive Science.Maynooth,Ireland:NUI,2001:85-94.
  • 9SMYTH B,MCCLAVE P.Similarity vs.diversity[C]∥Proceedings of the 4th International Conferenceon Case-Based Reasoning:Case-Based Reasoning Re-search and Development.Berlin,Germany:Springer-Verlag,2001:349-361.
  • 10ZIEGLER C N,MCNEE S M,KONSTAN J A,et al.Improving recommendation lists through topic diversifi-cation[C]∥Proceedings of the 14th International Con-ference on World Wide Web.New York,NY,USA:ACM,2005:22-32.

共引文献61

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部