期刊文献+

三个素数混合幂丢番图逼近

Diophantine approximation with three prime and mixed power
下载PDF
导出
摘要 采用Davenport-Heilbronn方法改进不等式|λ_1p_1+λ_2p_2+λ_3pk3+η|<(maxp_j)-σ中σ的值,其中k是大于或等于4的正整数,η是任意给定的实数,λ_1,λ_2,λ_3是非零实数,不全同号,并且λ_1/λ_2是无理数,得出了更好的σ值是:当k=4时,0<σ<1/2(2^(k+1)+1);当k≥5时,0<σ<2^(k-1)/(2^(k+1)+1)k(k+1). The value ofσin the inequality|λ1 p 1 +λ2 p 2 +λ3 p k3 +η|&lt; (maxp j )-σ is improved by applying Davenport-Heilbronn method,where k is an integer with k ≥4,η is an any real number,andλ1 ,λ2 ,λ3 are nonzero real numbers,not all of the same sign,withλ1/λ2 being irra-tional.It is proved that the better value ofσ is obtained,where 0&lt;σ&lt;1/2(2 k +1 +1)for k =4 and 0&lt;σ&lt;2k -1/(2 k +1 +1)k (k +1)for k ≥5.
作者 崔诗琦 耿利媛 CUI Shiqi;GENG Liyuan(College of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Chin)
出处 《西安工程大学学报》 CAS 2017年第5期713-720,共8页 Journal of Xi’an Polytechnic University
关键词 丢番图不等式 Davenport-Heilbronn方法 混合幂 Diophantine inequality Davenport-Heilbronn mixed power
  • 相关文献

参考文献2

二级参考文献11

  • 1VINOGRADOV I M. Reresentation of an odd number as the sums of three primes[J]. Dokl Akad Nauk SSSR, 1937, 15: 291-294(In Russian).
  • 2HUA L K. Some results in the additive prime number theory[J]. Quart J Math Oxford, 1938, 9:68-80.
  • 3BAKER A. On Some diophantine inequalities involving primes[J]. Reine Angew Math, 1967, 228: 166-181.
  • 4RAMACHANDRA K. On the Sums ∑λjfj(pj)[J].J Reine Angew Math, 1973, 262/263: 158-165.
  • 5VAUGHAN R C. Diophantine approximation by prime numbers[J]. Proc London Math Soc, 1974, 28: 373- 384.
  • 6BAKER R C, HARMAN G. Diophantine approximation by prime numbers[J]. London Math Soc, 1982, 25: 201-215.
  • 7HARMAN G. Diophantine approximation by prime numbers[J]. London Math Soc, 1991, 44: 218-226.
  • 8MATOMAKI K. Diophantine approximation by primes[J]. Glasq Math, 2010, 52: 87-106.
  • 9HARMAN G. The values of ternary quadratic forms at prime arguments[J]. Mathematika, 2004, 51: 83-96.
  • 10DAVENPORT H, HEILBRONN H. On indefinite quadratic forms in five variables[J]. London Math Soc, 1946, 21: 185-193.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部