摘要
采用Davenport-Heilbronn方法改进不等式|λ_1p_1+λ_2p_2+λ_3pk3+η|<(maxp_j)-σ中σ的值,其中k是大于或等于4的正整数,η是任意给定的实数,λ_1,λ_2,λ_3是非零实数,不全同号,并且λ_1/λ_2是无理数,得出了更好的σ值是:当k=4时,0<σ<1/2(2^(k+1)+1);当k≥5时,0<σ<2^(k-1)/(2^(k+1)+1)k(k+1).
The value ofσin the inequality|λ1 p 1 +λ2 p 2 +λ3 p k3 +η|&lt; (maxp j )-σ is improved by applying Davenport-Heilbronn method,where k is an integer with k ≥4,η is an any real number,andλ1 ,λ2 ,λ3 are nonzero real numbers,not all of the same sign,withλ1/λ2 being irra-tional.It is proved that the better value ofσ is obtained,where 0&lt;σ&lt;1/2(2 k +1 +1)for k =4 and 0&lt;σ&lt;2k -1/(2 k +1 +1)k (k +1)for k ≥5.
作者
崔诗琦
耿利媛
CUI Shiqi;GENG Liyuan(College of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Chin)
出处
《西安工程大学学报》
CAS
2017年第5期713-720,共8页
Journal of Xi’an Polytechnic University