期刊文献+

KPCA维数约简研究

Research on Dimensionality Reduction of KPCA
下载PDF
导出
摘要 在对数据分析与处理时,为了避免高维数据所带来的巨大运算开销,通常需要对原始数据进行维数约简。与基于线性投影的维数约简方法相比,基于核方法的维数约简由于能够实现对样本的非线性映射,因此在数据预处理中具有更大的优势。对基于核方法的主成分分析(KPCA)维数约简方法进行研究,并通过实验结果证明KPCA不仅能够实现数据的降维,还具有增强数据线性可分性的优势。 To lower the heavy computation induced by high dimensional samples in data analysis, the original data is otten preprocessed lay dimension reduction methods. Due to the nonlinear map capability provided by kernel trick, the dimension reduction methods with kernel have a great- er advantage than those based on linear projection. Carries out a research on the Kernel Principle Component Analysis (KPCA), and con- ducts an experiment on synthesis data. The experimental result shows that not only the dimension reduction but also linear separability can be achieved by KPCA.
作者 董虎胜
出处 《现代计算机》 2017年第21期3-6,25,共5页 Modern Computer
基金 苏州经贸学院科研项目(No.KY-ZR1407)
关键词 维数约简 线性投影 核方法 KPCA Dimension Reduction Linear Projection Kernel Method KPCA
  • 相关文献

参考文献2

二级参考文献15

  • 1Vapnik V N.Statistical learning theory[M].New York:Addison Wiley, 1998.
  • 2Bandat G,Anouar F.Generalized discrim inant analysis using a kernel function[J].Neural Computing,2000,12(10) :2385-2404.
  • 3LayDC.线性代数及其应用[M].刘深泉,等译.北京:机械工业出版社,2005.
  • 4Hofmann T, Scholkopf B, Smola A J. Kernel methods in machine learning [J]. Annals of Statistics, 2008, 36 (3): 1171-1220.
  • 5Zhuang J, Tsang I W, Hoi S C H. SimpleNPKL: Simple non- parametric kernel learning[C] //Proceedings of Interational Conference on Machine Learning, 2009.
  • 6Gonen M, Alpaydin E. Localized multiple kernel learning [C] // Proceedings of International Conference on Machine Learning, 2008: 352-359.
  • 7Hoi S C H, Jin R. Active kernel learning [C] //Proceedings of International Conference on Machine Learning, 2008: 400-407.
  • 8Ying Y, Campbell C, Girolami M. Analysis of SVM with indefinite kernels [C] //Advances in Neural Information Processing Systems, 2010.
  • 9Li F, Fu Y, Dai Y H, et al. Kernel learning by unconstrained optimization [C] //Proceedings of International Conference on Artificial Intelligence and Statistics, 2009.
  • 10Sonnenburg S, Ratsch G, Schafer C. A general and efficient multiple kernel learning algorithm [C] // Advances in Neural Information Processing Systems, 2006.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部