期刊文献+

采用元路径时效衰减和引用模式划分的学术引文推荐 被引量:3

Citation Recommendation Based on Time-Efficiency Decay and Citation Pattern Partition of Meta-Path
下载PDF
导出
摘要 针对现有学术引文推荐算法中元路径特征无法衡量学术文献的时效性,且对元路径特征的利用和划分粒度较粗从而导致推荐精度不高的问题,提出了一种采用元路径时效衰减和引用模式划分的学术引文推荐方法。首先,利用元路径抽取丰富的引文特征,并在计算元路径特征时加入了时效衰减因子,提升了新发表文献的推荐精度;其次,提出了融合元路径特征的主题模型MpTM,该模型利用主题特征为文献划分引用模式,并联合学习文献的主题分布、引用模式和元路径特征权重,细化了元路径特征的粒度;最后,通过所有引用模式下的元路径特征加权值,为目标文献推荐学术引文。在AAN数据集上的实验结果表明:所提方法在准确率和召回率上平均提升约41.99%和22.43%,能够提升新发表文献和非权威文献的推荐精度,并能有效缓解引文链接的稀疏性问题。 The meta-path approach in present citation recommendation algorithms cannot measure the time-efficiency of papers and its utilization and partition are relatively coarse-grained, which results in low citation recommendation performance. This paper presents a citation recommendation method considering time-efficiency decay and citation pattern partition of meta- path. We first extract abundant citation features according to the meta-path, and then calculate these features by extending Randomwalk with time-efficiency decay factor to improve the citation performance of newly published papers. Based on these meta-path features, we present a meta- path based topic model (MpTM). This model utilizes topic model to partition citation patterns and can jointly learn topic distributions, citation patterns and meta-path feature's weights. The citations are finally recommended according to the fine-grained meta-path features among all citation patterns. Experimental results in AAN dataset showed that our proposed method has improved the average accuracy and recall by about 41.99% and 22.43%, respectively. It can promote the recommendation performance for newly published papers and unauthoritative papers, and effectively relieve the link sparse problem in citation dataset.
作者 戴涛 朱利 张鸿飞 DAI Tao;ZHU Li;ZHANG Hongfei(Sehool of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第7期162-168,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61373046) 陕西省自然科学基金资助项目(S2015YFJM2129)
关键词 学术引文推荐 元路径 时效衰减 主题模型 引文模式 citation recommendation meta-path time-efficiency decay topic model citation pattern
  • 相关文献

参考文献3

二级参考文献18

  • 1LEE D H.Pittcult: trustbased cultural event recommender [C]∥Proceedings of the 2008 ACM Conference on Recommender Systems.New York,USA: ACM,2008: 311-314.
  • 2MASSA P,AVESANI P.Trust metrics in recommender systems [M]∥Computing with Social Trust.Berlin,Germany: Springer,2009: 259-285.
  • 3MATSUO Y,YAMAMOTO H.Community gravity: measuring bidirectional effects by trust and rating on online social networks [C]∥Proceedings of the 18th International Conference on World Wide Web.New York,USA: ACM,2009: 751-760.
  • 4VICTOR P,CORNELIS C,COCK M D,et al.Key figure impact in trustenhanced recommender systems[J].AI Communications,2008,21(2/3): 127-143.
  • 5MA Nan,LIM E P,NGUYEN V A,et al.Trust relationship prediction using online product review data.
  • 6∥Proceeding of the first ACM International Workshop on Complex Networks Meet Information and Knowledge Management.New York,USA: ACM,2009: 47-54.
  • 7YUAN Weiwei,GUAN Donghai,LEE Y K,et al.Improved trustaware recommender system using smallworldness of trust networks[J].KnowledgeBased Systems,2010,23(3): 232-238.
  • 8RUFFO G,SCHIFANELLA R.A peertopeer recommender system based on spontaneous affinities[J].ACM Transactions on Internet Technology,2009,9(1): 1-34.
  • 9LI Yungming,CHEN Chingwen.A synthetical approach for blog recommendation: Combining trust,social relation,and semantic analysis[J].Expert Systems with Applications,2009,36(3): 6536-6547.
  • 10KWON K,CHO J,PARK Y.Multidimensional credibility model for neighbor selection in collaborative recommendation[J].Expert Systems with Applications,2009,36(3): 7114-7122.

共引文献59

同被引文献49

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部