期刊文献+

融合Fisher线性判别分析的多维特征融合情景感知推荐方法 被引量:6

A Context-Aware Recommendation Method with Multi-Feature Fusion Based on Fisher Linear Discriminant Analysis
下载PDF
导出
摘要 针对采用单维特征建立用户的偏好模型所导致的推荐结果无法有效覆盖用户潜在偏好特征而影响推荐质量的问题,提出了一种基于Fisher线性判别分析的多维特征融合情景感知推荐方法。该方法建立了包含时间衰减度、属性偏好、偏好可影响程度等多维特征的偏好样本空间;采用特征融合、投影变换等方法,在最佳鉴别矢量空间基于Fisher判别准则融合用户的多维特征;采用拉格朗日乘子法求解最优投影方向,建立起多维特征优化的偏好获取模型。在BookCrossing与Netfilix数据集上的实验结果表明:与现有方法相比,所提方法的推荐准确率平均提高了16.61%,多样性平均提高了约38.01%,能够有效地覆盖用户的潜在偏好特征,并取得更好的推荐质量。 A context-aware recommendation method with multi-feature fusion based on Fisher linear discriminant analysis is proposed to solve the problem that the recommendation result does not cover user' s potential preference so the recommendation quality is influenced when prediction methods only acquire user's preference from the single view data.This method establishes a sample space of preference data,including the degree of time attenuation,attribute preference and the degree of behavior influence.The methods of feature fusion and projection transformation are used to fuse users' multidimensional features in an optimal vector space based on Fisher discriminant criterion.Then,the Lagrange multiplier method is employed to compute the optimal projection direction,and a users' preference model is constructed.Experimental results on data sets of BookCrossing and Netfilix and comparisons with existing methods show that the recommendation accuracy and diversity of the proposed method improve by 16.61% and 38.01%,respectively.These results indicate that the proposed method can effectively cover users' potential preference and achieve better prediction quality.
作者 赵志华 陈莉
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第8期40-46,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61373176)
关键词 多特征融合 FISHER线性判别分析 属性偏好 时间衰减 情景感知推荐 multi-feature fusion Fisher linear discriminant analysis attribute preference time attenuation context-aware recommendation
  • 相关文献

参考文献5

二级参考文献46

  • 1黄润才,周集良,孙道清,曹奇英.普适计算中上下文依赖的主动任务发现[J].计算机应用研究,2009,26(3):843-845. 被引量:1
  • 2崔亚洲,段刚.基于Web日志和商品分类的协同过滤推荐系统[J].电子科技大学学报(社科版),2006,8(3):39-42. 被引量:5
  • 3李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 4Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 5Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 6Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 7Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 8Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 9Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 10Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].

共引文献307

同被引文献41

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部