期刊文献+

钍增殖熔盐堆不同燃耗核数据不确定度分析 被引量:3

Analysis of Uncertainty of k_(eff) to Nuclear Data in Thorium Molten Salt Breeder Reactor with Burnup
下载PDF
导出
摘要 本文利用开发的耦合模块,将SCALE程序中的TRITON和TSUNAMI-3D模块相结合,针对1GWth钍增殖熔盐堆开展不同燃耗时期核数据引起的k_(eff)不确定度分析。结果表明:随着燃耗的增加,核数据引起的keff不确定度由0.49%增大到0.55%。初始时刻对k_(eff)不确定度影响最大的反应截面是232 Th(n,γ)(约0.35%),其次是233 U(n,f)和7 Li(n,γ)。随着燃耗的增加,^(135)Xe(n,γ)、^(143)Nd(n,γ)对k_(eff)不确定度的影响逐渐显著。各反应灵敏度系数分析表明,^(232)Th(n,γ)、^(233)U(n,f)和~7Li(n,γ)截面数据对k_(eff)不确定度影响较大,需重点改进。上述关键反应在0.02~0.5eV敏感性较强,需重点关注。 Based on a 1 GWth thorium molten salt breeder reactor (TMSBR), uncertainty of keff to nuclear data was analyzed using the TRITON and TSUNAMI-3D mod- ules of SCALE. The results show that uncertainty of keff to nuclear data increases from 0.49% to 0.55% with burnup time. At the beginning of life (BOL), 232Th(n,γ) cross section is the largest contributor to the keff uncertainty, which is about 0.35%, followed by the contributions from 233U(n, γ) and 7Li(n,γ) cross sections. With the increase of burnup, the effects of 135 Xe(n, γ) and 143 Nd(n,γ) cross sections on the keff uncertainty become more increasingly significant. The analysis for sensitivity coefficient shows that the cross sections for 232Th(n,γ), z33U(n,γ) and 7Li(n,γ) have more significant impacts on the keff uncertainty, especially at at the neutron energy range of 0. 02-0.5 eV, whichshould therefore be improved.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2017年第11期2013-2020,共8页 Atomic Energy Science and Technology
基金 中国科学院TMSR先导专项资助项目(XDA02010000) 中国科学院前沿科学重点研究项目资助(QYZDY-SSW-JSC016) 国家自然科学基金资助项目(91326201)
关键词 不确定度 灵敏度系数 钍增殖熔盐堆 燃耗 uncertainty sensitivity coefficient thorium molten salt breeder reactor burnup
  • 相关文献

参考文献5

二级参考文献34

  • 1荣健.核数据宏观检验中的灵敏度分析方法研究[M].北京:中国原子能科学研究院,2000..
  • 2SMITH D L. Probability, statistics, and data uncertainties in nuclear science and technology [R]. USA: American Nuclear Society, 1991.
  • 3SHIBATA K, IWAMOTO O, NAKAGAWA T et al. JENDL-4.0 : A new library for nuclear science and engineering[J]. J Nucl Sci Technol, 2010, 48(1): 1-30.
  • 4CHADWICK M B, HERMAN M, OBLOZIN- SKY P, et al. ENDF/B-Ⅶ. 1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data[J]. Nuclear Data Sheets, 2011, 112(12): 2 887.
  • 5WEISBIN C R, OBLOW E M, MARABLE J H,et al. Application of sensitivity and uncertainty methodology to fast reactor integral experiment analysis[J]. Nucl Sci Eng, 1978, 66(3): 307- 333.
  • 6SCALE: A modular code system for performing standardized computer analyses for licensing evaluations, NUREG/CR-0200, Rev. 5, ORNL/ NUREG/CSD-2/RS, Vol. Ⅰ-Ⅲ[R]. USA: ORNL, 1997.
  • 7CHILDS R L. SENI: A one-dimensional crosssection sensitivity and uncertainty module for criticality safety analysis, NUREGOCR-5719 (ORNLOTM-13738)[R]. USA: U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory. 1999.
  • 8REARDEN B T. Perturbation theory eigenvalue sensitivity analysis with monte carlo techniques [J]. NuclSciEng, 2004, 146: 367-382.
  • 9RIMPAULT G, PLISSON D, TOMMASI J, et al. The ERANOS code and data system for fast reactor neutronics analysis [C]// Proceedings of PHYSOR 2002 Conference. Seoul, Korea: American Nuclear Society, 2002.
  • 10KODELI I. Multidimensional deterministic nuclear data sensitivity and uncertainty code sys tern, method and application[J]. Nucl Sci Eng, 2001, 138(1): 45-66.

共引文献27

同被引文献15

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部