期刊文献+

液滴在亲水表面快速铺展过程中的溅射现象

Ejection Phenomenon of Droplets During the Fast Spreading on a Hydrophilic Surface
下载PDF
导出
摘要 采用格子Boltzmann方法,建立了液滴在亲水固体表面上快速铺展过程的三维非稳态理论模型。研究了液滴铺展的动态过程,分析了液滴的形貌变化,比较了固体表面润湿性和液滴的运动黏度对液滴铺展过程的影响,获得了溅射现象产生的原因。研究结果表明,液滴接触到亲水固体表面后,从底部产生的毛细波是造成液滴颈部断裂和溅射现象的主要原因;固体表面的接触角越小,液滴铺展的速度越快,越容易产生溅射现象;黏性力在铺展过程中起到减缓液滴铺展的作用,液滴的运动黏度越大,越难产生溅射现象。 The three-dimensional unsteady theoretical model of the droplet fast spreading process on a hydrophilic solid surface was developed by the lattice Boltzmann method. The dynamic process of the droplet spreading was researched, and the morphology change of the droplet was analyzed. The effects of the solid surface wettability and droplet kinematic viscosity on the droplet spreading process were compared, and the causes of the ejection phenomenon were obtained. The research results indicate that after the droplet comes into contact with the hydrophilic solid sur- face, the capillary wave generated from the bottom of the droplet is a main cause for the droplet neck fracture and ejection phenomenon. The smaller the contact angle on a solid surface is, the faster the velocity of the droplet spreading is, and the more easily the ejection phenomenon generates. The viscosity force slows down the droplet spreading. The larger ty of droplet is, the more difficultly the ejection phenomenon generates.
出处 《微纳电子技术》 北大核心 2017年第12期817-823,846,共8页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51706194)
关键词 液滴 铺展 亲水表面 溅射现象 接触角 格子BOLTZMANN方法 droplet spreading hydrophilic surface ejection phenomenon Boltzmann method the kinematic viscosi contact angle lattice
  • 相关文献

参考文献3

二级参考文献42

  • 1段俐,康琦,胡文瑞.液层厚度对浮力-热毛细对流面型的影响[J].力学学报,2004,36(6):641-648. 被引量:5
  • 2李友荣,邓努波,吴双应,彭岚,李明伟.表面张力温度系数对硅单晶生长的影响[J].材料研究学报,2005,19(4):395-400. 被引量:2
  • 3崔海亮,段俐,胡良,康琦.应用PIVT技术测量单液滴热毛细迁移时的速度场和温度场[J].实验流体力学,2007,21(2):98-102. 被引量:1
  • 4Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interracial flow [J]. Annual Review of Fluid Mechanics, 1999, 31 :567 - 603.
  • 5Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30:329 - 364.
  • 6Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids [J]. Physical Review A, 1991, 43(8):4320-4327.
  • 7Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational Physics, 2004, 198(2): 628 - 644.
  • 8Thurey N. Physically Based Animation of Free Surface Flows with the Lattice Boltzmann Method [D]. Nuremberg: University of Erlangen, 2007.
  • 9Buick J M, Greated C A. Gravity in a lattice Boltzmann model [J]. Physical Review E, 2000, 61(5): 5307- 5320.
  • 10Sterling J D, Chen S Y. Stability analysis of lattice Boltzmann methods [J]. Journal of Computational Physics, 1996, 123(1): 196-206.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部