期刊文献+

扫描近场光学显微镜测量量子点团簇超辐射

Measurement of Superradiance of Quantum Dots Cluster by Scanning Near-field Optical Microscope
下载PDF
导出
摘要 用扫描近场光学显微镜的针尖照明模式对ZnSe量子点团簇进行精确定位测量,研究了量子点团簇的超辐射效应。在理论上根据Wannier激子超辐射模型阐述了量子点系统的超辐射发光机制;实验上用荧光光谱表征ZnSe量子点溶液的荧光性质,用扫描近场光学显微镜(SNOM)表征单个量子点团簇的超辐射光谱。结果表明,在Wannier激子超辐射模型中,量子点团簇辐射衰变率受到量子点团簇的大小和辐射光谱的共同影响,在实验上得出团簇的辐射衰变率随团簇尺寸的增加而增大,同时,不同尺寸的量子点团簇产生的辐射光谱也会对其产生影响,理论和实验的结合验证了激子超辐射的适用性。此研究结果可广泛用于生物传感器和光子器件等领域。 The needle illumination mode of the scanning near-field optical microscope(SNOM)is used to carry out the precise positioning measurement of the ZnSe quantum dots cluster and the superradiance effect of the quantum dots cluster is studied in this paper.The superradiance luminous mechanism of the quantum dots system is presented based on the Wannier exciton superradiance model.The fluorescence properties of ZnSe quantum dots solution are characterized by the fluorescence spectrum and the superradiance spectrum of single quantum dot clusters is characterized by SNOM experimentally.The results show that the radiation decay rate of the quantum dots cluster is affected by both the size of quantum dots cluster and the radiation spectrum.The radiation decay rate of the quantum dots cluster increases with the increase of the size of the quantum dots cluster,and the radiation spectrum generated by the quantum dots cluster with different size will affect the radiation decay rate.The applicability of the exciton superradiance is verified by both the theory and experiment.The results of this study can be widely used in biosensors and photonic devices and other fields.
出处 《压电与声光》 CSCD 北大核心 2017年第6期805-808,812,共5页 Piezoelectrics & Acoustooptics
基金 国家国际科技合作专项基金资助项目(2014DFA00670) 贵州省国际科技合作基金资助项目(黔科合外G字2011[7001]) 国家自然科学基金资助项目(11204046)
关键词 超辐射 ZNSE量子点 扫描近场光学显微镜 荧光光谱 辐射衰变率 superradiance ZnSe quantum dots scanning near-field optical mieroscope(SNOM) fluorescencespectrum radiation decay rate
  • 相关文献

参考文献2

二级参考文献36

  • 1TANAKA S,HIRAYAMA H,AOYAGI Y,et al.Stimulated Emission from Optically Pumped GaN Quantum dots[J].ApplPhys Lett,1997,71:10.
  • 2JOHNSON J C,YAN H,YANG P,et al.Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides[J].J PhysChem B,2003,107:8816.
  • 3OZGUR U,EVERITT H O,HE L,et al.Stimulated Emission and Ultrafast Carrier Relaxation in AIGaN/GaN Multiple Quantum wells[J].Appl Phys Lett,2003,82:23.
  • 4CAO H,ZHAO Y G,HO S T,et al.Random Laser Action in Semiconductor Powder[J].Phys Rev Lett,1999,82:2278.
  • 5DICKER H.Coherence in Spontaneous Radiation Processes[J].Phys Rev,1954,93:99.
  • 6EBERLY J H,REHLER N E.Superradiance[J].Phys Rev A,1971,3.1735.
  • 7SKRIBANOWITZ N,HERMAN I P,MACGILLIVERAY J C,et al.Observation of Dicke Superradiance in Optically Pumped HF Gas[J].Phys Rev Lett,1973,30:309.
  • 8GROSS M,FABRE C,PILLET P,et al.Observation of Near-infrared Dicke Superradiance on Cascading Transitions in Atomic Sodium[J].Phys Rev Lett,1976,36:1035.
  • 9VREHEN Q H F,HIKSPOORS H M J.Single-pulse Superfluorescence in Cesium[J].Phys Rev Lett,1977,39:547.
  • 10FLUSBERG A,MOSSBERG T,HARTMANN S R.Observation of Dicke Super-radiance at 1.30 μm in Atomic Tl Vapor[J].Phys Lett A,1976,58:373.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部