期刊文献+

基于测量的量子图像识别研究 被引量:4

Research on quantum image recognition based on measurement
下载PDF
导出
摘要 目前,已有的量子相似度比较算法:1)逐个比较图像对应位置的像素值;2)将两幅图像分别用量子态表示,再将两幅图像进行连接(意味着将两个量子态连接成一个态),再进行相关的量子操作。所提出的比较算法,是在不连接图像的基础上,将图像用量子态表示,进行控制交换(c-Swap)操作,再进行量子测量,根据测量结果判断两幅图像的相似度。将所提的量子相似度比较算法应用到量子手势识别中,实验结果表明所提算法在识别问题上具有可行性。在经典领域中,手势识别的流程比较复杂。而在量子领域中,无需提取手势的颜色、纹理、特征等步骤,直接可以将手势进行二值化表示,再根据所提的图像相似度算法来实现手势识别。 At present, the existing quantum similarity comparison: one is to compare the pixel values of the image' s corresponding position one by one ; the other is to represent two images by quantum states, then the two images are connected ( it means that the two quantum states are connected to a state), and the relevant quantum operation is carried out. The proposed algorithm is based on the non- connected image, the image is represented by quantum states. Next, the control swap (c-Swap) operation is performed, then the quantum measurement is carried out, and the similarity of two images is determined according to the measurement result. The proposed quantum similarity comparison algorithm is applied to quantum gesture recognition, and the experimental results show that the proposed algorithm is feasible in identifying the problem. In the classic field, the process of gesture recognition is more complex. In the quantum field, there is no need to extract the gestures of the color, texture, features and other steps. The gesture can be binarized directly, and then the gesture recognition is achieved according to the proposedimage similarity algorithm.
出处 《电子测量与仪器学报》 CSCD 北大核心 2017年第10期1679-1686,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61201444)资助项目
关键词 量子图像识别 c-Swap操作 量子测量 量子手势识别 quantum image recognition c-Swap operation quantum measurement quantum gesture recognition
  • 相关文献

参考文献2

二级参考文献36

  • 1Turk M A, Pentland A. Eigenfaces for recognition. Journal Cognitive Neuroscience, 1991, 3(1).. 71-86.
  • 2Bartlett M, Movellan J, Sejnowski T. Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 2002, 13(6): 1450-1464.
  • 3Sch~Slkopf B, Smola A, Miiller K. Kernel principal compo- nent analysis//Proceedings of the 7th International Confer- ence on Artificial Neural Networks (ICANN'97). Lausanne, Switzerland, 1997:583-588.
  • 4Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: A new approach to appearance-based face representa- tion and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1).. 131-137.
  • 5Nefian A. A hidden Markov model-based approach for face detection and recognition [Ph.D. dissertation]. Georgia Institute of Technology, Atlanta, USA, 1999.
  • 6Er M, Wu S, Lu J, et al. Face recognition with radial basis function. IEEE Transactions on Neural Networks, 2002, 13(3) : 697-710.
  • 7Li S Z, Jain A K. Handbook of face recognition. 2nd Edtion. Germany: Springer, 2011.
  • 8Deutsch D. Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society of A, 1985, 400(1818): 97-117.
  • 9Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring//Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA, 1994:124-134.
  • 10Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Physics Review Letters, 1997, 79(2): 325 328.

共引文献155

同被引文献47

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部