期刊文献+

夏季制冷循环下PCC能量桩负摩阻力特性研究 被引量:12

Negative Skin Friction Behavior of PCC Energy Pile under Heating Cycle
下载PDF
导出
摘要 基于传统PCC(Large Diameter Pipe Pile by Cast-in-place Concrete)桩研发的新型PCC能量桩技术,具有埋管方便、热传导效率高等技术优点。目前针对循环温度下该新型能量桩负摩阻力特性的研究仍相对较少。基于模型试验方法,开展循环温度影响下PCC能量桩的静载荷试验,测得循环温度作用下PCC能量桩的荷载一位移关系,以及桩、土温度等变化规律曲线;进而,通过针对桩侧摩阻力的计算与分析,对实际运行过程中PCC能量桩的承载特性与负摩阻力进行了初步讨论。结果表明,风干砂土中PCC能量桩的竖向承载力随着桩体温度的升高而略有增加;PCC能量桩桩侧摩阻力变化规律与常规能量桩规律一致;制冷循环结束后,能量桩顶部出现负摩阻力区,工程设计人员需要格外关注。 Based on traditional PCC pile, one of new type energy pile was developed. This new PCC energy pile has many advantages, such as, conveniently buried and high thermal conduction efficiency. However, the researches on negative skin friction of this new type energy pile influ- enced by temperature are relatively little. Based on model test method, the properties of PCC en- ergy pile was carried out. Load-displacement curves under different temperatures and the temper- ature variation of pile and soil were measured, and the friction of pile shaft was also calculated. The bearing capacity and negative skin friction of PCC energy pile influenced by pile temperatures were discussed and analyzed. The results show that the bearing capacity of PCC energy pile is im- proved with the increment of pile temperature, which is similar with traditional solid energy pile. At the end of cooling, the direction of mobilized shaft resistance near top part of pile conversed and negative skin friction appeared.
出处 《防灾减灾工程学报》 CSCD 北大核心 2017年第4期511-517,共7页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金项目(51378178) 江苏省普通高校研究生科研创新计划项目(KYZZ15_0145)资助
关键词 能量桩 PCC桩 负摩阻力 热力耦合 模型试验 energy pile PCC pile negative skin friction coupled thermal-mechanical model test
  • 相关文献

参考文献6

二级参考文献49

  • 1仲智,唐志伟.桩埋管地源热泵系统及其应用[J].可再生能源,2007,25(2):94-96. 被引量:11
  • 2张强林,王媛.岩体THM耦合应用研究现状综述[J].河海大学学报(自然科学版),2007,35(5):538-541. 被引量:2
  • 3刘汉龙,丁选明,吴宏伟,等.一种PCC能量桩及制作方法:中国,201210298385.5[P].2012-08-21.
  • 4PREENE M, POWRIE W. Ground energy systems: from analysis to geotechnical design[J]. Grotechnique, 2009, 59(3) 261 - 71.
  • 5BRANDL H. Energy foundations and other thermo-active ground structures[J]. Grotechnique, 2006, 56(2): 81 - 122.
  • 6MORINO K, OKA T. Study on heat exchanged in soil by circulating water in a steel pile[J]. Energy and Buildings, 1994, 21(1): 65 - 78.
  • 7TAMAWSKI V R, MOMOSE T, LEONG W H. Assessing the impact of quartz content on the prediction of soil thermal conductivity[J]. Grotechnique, 2009, 59(4): 331 - 338.
  • 8GAO J. Numerical and experimental assessment of thermal performance of vertical energy piles: an application[J]. Applied Energy, 2008, 85(10): 901 - 10.
  • 9PAHUD D, FROMENTIN A, HADOM J C. The duct ground heat storage model (DST) for TRNSYS used for the simulation of heat exchanger piles[C]// DGC-LASEN, Lausanne, 1996.
  • 10LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behavior of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763 - 781.

共引文献201

同被引文献56

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部