摘要
设μ_(M,D)是由扩张矩阵M∈M_n(Z)和有限数字集D?Z^n通过仿射迭代函数系统{φ_d(x)=M^(-1)(x+d)}_(d∈D)唯一确定的自仿测度,它的非谱性与相应的平方可积函数构成的Hilbert空间L^2(μ_(M,D))中正交指数函数系的有限性或无限性密切相关.通过对数字集D的符号函数m_D(x)的零点集合Z(m_D)的特征分析以及其中非零中间点(即坐标为0或1/2的点)和非中间点的性质应用,得到了非谱自仿测度下正交指数函数系基数的一个更为精确的估计,改进推广了Dutkay,Jorgensen等人的相关结果.
Let μM,D be the self-affine measure uniquely determined by an expanding matrix M E Mn(Z) and a finite digit set D C Zn through the aitine iterated function system (IFS){Фd(x) ---- M^-1(x + d)}deD. The non-spectrality of #M,D is directly con- nected with the finiteness or infiniteness of orthogonal exponentials in the Hilbert space L2(ItM,D). We provide a better estimate on the cardinality of μM,D-Orthogonal expo- nentials by characterizing the zero set Z(mD) of the symbol function mD(x) and its middle points. The results here extend the corresponding results of Dutkay, Jorgensen and others.
出处
《数学学报(中文版)》
CSCD
北大核心
2017年第6期1003-1012,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11571214)
中央高校基本科研业务费专项基金(GK201601004)
关键词
自仿测度
正交指数函数系
非谱性
数字集
self-affine measures
orthogonal exponentials
non-spectrality
digit set