期刊文献+

Microstructural evolution of Al-Si coating and its influence on high temperature tribological behavior of ultra-high strength steel against H13 steel 被引量:1

Microstructural evolution of Al-Si coating and its influence on high temperature tribological behavior of ultra-high strength steel against H13 steel
原文传递
导出
摘要 Al-Si coated ultra-high strength steel(UHSS)has been commonly applied in hot stamping process.The influence of austenitizing temperature on microstructure of Al-Si coating of UHSS during hot stamping process and its tribological behavior against H13 steel under elevated temperature were simulatively investigated.The austenitizing temperature of Al-Si coated UHSS and its microstructual evolution were confirmed and analyzed by differential scanning calorimetry and scanning electron microscopy.A novel approach to tribological testing by replicating hot stamping process temperature history was presented.Results show that the hard and stable phases Fe_2Al_5+FeAl_2 formed on Al-Si coating surface after exposure to 930°C for 5 min,which was found to be correlated to the tribological behavior of coating.The friction coefficient of coated steel was more stable and higher than that of uncoated one.The main wear mechanism of Al-Si coated UHSS was adhesion wear,while abrasive wear was dominant for the uncoated UHSS. Al-Si coated ultra-high strength steel(UHSS)has been commonly applied in hot stamping process.The influence of austenitizing temperature on microstructure of Al-Si coating of UHSS during hot stamping process and its tribological behavior against H13 steel under elevated temperature were simulatively investigated.The austenitizing temperature of Al-Si coated UHSS and its microstructual evolution were confirmed and analyzed by differential scanning calorimetry and scanning electron microscopy.A novel approach to tribological testing by replicating hot stamping process temperature history was presented.Results show that the hard and stable phases Fe_2Al_5+FeAl_2 formed on Al-Si coating surface after exposure to 930°C for 5 min,which was found to be correlated to the tribological behavior of coating.The friction coefficient of coated steel was more stable and higher than that of uncoated one.The main wear mechanism of Al-Si coated UHSS was adhesion wear,while abrasive wear was dominant for the uncoated UHSS.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第10期1048-1058,共11页 钢铁研究学报(英文版)
基金 the financial support from National Natural Science Foundation of China(Grand No.51475280)
关键词 Hot stamping Al-Si coating Ultra-high strength steel Intermetallic compound DIFFUSION Friction coefficient Adhesive wear Hot stamping Al-Si coating Ultra-high strength steel Intermetallic compound Diffusion Friction coefficient Adhesive wear
  • 相关文献

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部