期刊文献+

改进的引力搜索算法用于阵列天线方向图综合 被引量:4

Application of the Improved Gravitational Search Algorithm for the Pattern Synthesis of Array Antennas
下载PDF
导出
摘要 针对基本引力搜索算法在处理复杂的阵列天线综合问题时,存在早熟收敛和收敛速度慢的缺陷,提出了一种混合引力搜索算法。首先将精英粒子保护算法及后进粒子微扰算法嵌入到基本的引力搜索算法中,延长了粒子的存活时间,扩大了粒子邻域的搜索范围,保护了种群的多样性,较大程度上改善了算法过早收敛的问题;其次重新定义了惯性质量调节系数q,使种群中粒子惯性质量的差距增大,算法能够快速有效地收敛于问题的最优解,从而改善了全局收敛性与局部收敛性的平衡。将该算法用于20元阵列天线方向图综合中,仿真结果表明,与基本的引力搜索算法以及同类智能优化算法相比,改进后的算法在计算精度和收敛速度,及种群多样性方面均有显著改善。 In order to overcome the problems of the premature convergence at; the slow convergence speed caused by the gravitational search algorithm (GSA) in the complex pattern synthesis of array antennas, an improved gravi- tational search algorithm the hybrid gravitational search algorithm (HGSA) is presented. By extending the sur- vival time of the elite particles and the backward particles appropriately, the diversity of the population is protected, so the problem of premature convergence of the GSA is solved; To balance the global and local searching capabilities, make the algorithm converge to the optimal solution quickly and effectively, the size of the inertia mass coefficient q is adjusted. The synthesis of the 20 elements array antenna with two examples based on the HGSA, GSA, GA, PSO are simulated. The experimental results have demonstrated that the HGSA can achieve better accu- racy and faster convergence rate compared with other three algorithms.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第5期780-785,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金青年科学基金(61302133) 西安市科技计划项目(CXY1440(4)) 西安科技大学教学方法与教学手段改革项目(ZX16032)资助
关键词 引力搜索算法 精英粒子 后进粒子 惯性质量调节系数 方向图综合 gravitational search algorithm elite particles backward particles inertia mass coefficient pattern synthesis
  • 相关文献

参考文献3

二级参考文献31

  • 1魏继国,屈也频.航空声纳浮标定位的数据融合方法研究[J].航空电子技术,2008,39(2):34-38. 被引量:4
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3凌国民,王泽民.声呐浮标技术及其发展方向[J].声学与电子工程,2007(3):1-5. 被引量:25
  • 4Cho S, Cban Y T. A Total Least Squares Algorithm for a Target Localization Using Multiple Sonobuoys. UDT'2002, Korea.
  • 5Suhwan Kim, Bonhwa Ku, Wooyoung Hong, Hanseok Ko. Performance Comparison of Target Localization for Active Sonar Sys- tems. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(4) : 1371-1380.
  • 6Stefano Coraluppi. Multistatic Sonar Localization. IEEE Journal of Oceanic Engineering, 2006, 14 (3) : 964-974.
  • 7王英民等著.水声系统设计中的最优化理论和方法.西安:西北工业大学出版社,2005,19-47.
  • 8Pietquin O, Dutoit T. A Probabilitic Framework for Dialog Simulation and Optimal Strategy Learning[ J ]. IEEE Trans on Speech and Audio Processing, 2005,14( 2): 589-599.
  • 9Kennedy J, Eberhart R C. Particle Swarm Opimization [ C] //IEEE International Conference on Neural Network, 1995: 1942-1948.
  • 10Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm[ C]//Proc IEEE Int Conf System Man Cy- bericle, 1997 : 4104-4109.

共引文献17

同被引文献11

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部