期刊文献+

基于饱和泊松分布的网络边的Birnbaum重要度计算方法 被引量:1

Network Birnbaum Importance Measure under Saturated Poisson Distribution
下载PDF
导出
摘要 重要度是系统可靠性领域用以识别系统薄弱环节的主要方法之一,也是系统可靠性优化的前提和基础。在对传统Birnbaum重要度计算方法研究的基础上,假设网络边故障个数概率分布已知的前提下,基于网络结构谱,给出了一种基于概率分布的Birnbaum重要度计算方法,重点探讨了网络故障边个数服从饱和泊松分布时Birnbaum重要度的性质。最后,结合算例给出了基于饱和泊松分布的Birnbaum重要度的应用方法。 Network reliability analysis aim to quantify the impact of component failures on the network failure and to identify the weakness in a network. Importance measures provides numerical indicator to determine which compo- nents are more important for network reliability improvement or more critical for network failure. In this paper, the number of failed components is introduced, which is a random variable having a distribution. Under the condition of the distribution have been known, based on the structural spectrum, a new method to compute Birnbaum importance measure is derived. In particularly, when the number of failed components follows a saturated Poisson distribution, several results concerning ranking of components according to Birnbaum importance measure is presen- ted. Finally, an example is presented to explain the application of the results.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第5期870-875,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(7147147) 高等学校学科创新引智计划(B13044)资助
关键词 网络 Birnbaum重要度 饱和泊松分布 网络结构谱 Birnbaum importance measure D-spectrum network saturated Poisson distribution
  • 相关文献

参考文献2

二级参考文献37

  • 1Birnbaum Z W. On the Importance of Different Components in a Multi-Component System. New York : Academic Press, 1969, 581 - 592.
  • 2Barlow R E, Proschan F. Importance of System Components and Failure Tree Events. Stochastic Processes and Their Applica- tions, 1975, 3(2) : 153 - 173.
  • 3Butler D A. An Importance Ranking for Components Based upon Cuts. Operations Research, 1977, 25:874 - 879.
  • 4Butler D A. A Complete Importance Ranking for Components of Binary Coherent Systems with Extensions to Multi-State Sys- tems. Naval Research Logistics Quarterly, 1979, 4 : 565 - 578.
  • 5Lambert H E. Fault Trees for Decision Making in Systems Analysis. University of California, Livermore, 1975.
  • 6Fricks R M, Trivedi K S. Importance Analysis with Markov Chains. Proceedings of the 2003 Annual Reliability and Maintain- ability Symposium, IEEE Press, Tampa, 2003, 89 - 95.
  • 7Vesely W E. A Time-Dependent Methodology for Fault Tree Evaluation. Nuclear Engineering and Design, 1970, 13 (2) : 337 - 360.
  • 8FusseU J B. How to Hand-Calculate System Reliability and Safety Characteristics. IEEE Trans on Reliability, 1975, R -24 (3) : 169 - 174.
  • 9Natvig B. A Suggestion of a New Measure of Importance of System Components. Stochastic Processes and Their Applications, 1979, 9(3) : 319 -330.
  • 10Xie M, Shen K. On Ranking of System Components with Respect to Different Improvement Actions. Microelectronics Reliability, 1989, 29(2) : 159 -164.

共引文献17

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部