期刊文献+

一种先进的飞机吊挂结构疲劳寿命仿真分析方法 被引量:4

An Advanced Fatigue Life Simulation Method for Aircraft Suspension Structures
下载PDF
导出
摘要 常规的有限元疲劳寿命仿真分析采用连续函数作为形状函数,在处理位移不连续问题时,需将裂尖附近网格进行高密处理和重新剖分来进行裂纹扩展模拟,导致求解规模大,计算效率低。采用扩展有限元法和虚拟裂纹闭合技术,以吊挂结构为研究对象,通过建立局部模型,对疲劳裂纹扩展寿命进行分析计算,使得计算效率提高,且计算结果与试验结果相比,误差仅为8.2%,从而证明了该方法的有效性。 The conventional finite element simulation of the fatigue life analysis using continuous function as shape function, In dealing with the problem of displacement discontinuity, It is necessary to carry out crack propagation simulation by high density meshing and re-segmentation in the vicinity of the crack tip, which leads to large scale and low computational efficiency. In this paper, based on the hanging structure, through the establishment of local model, the extended finite element method and the virtual crack closure technique are used crack propagation life, improving computational efficiency, the calculation results compared results, error was only 8.2%, proving the effectiveness of the proposed method. to simulate the fatigue with the experimental
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第5期905-909,共5页 Journal of Northwestern Polytechnical University
关键词 疲劳裂纹扩展 扩展有限元 虚拟裂纹闭合技术 仿真分析 ABAQUS computational efficiency crack tips design of experiments fatigue crack propagation mesh generation
  • 相关文献

参考文献4

二级参考文献46

  • 1方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,24(z1):46-52. 被引量:45
  • 2李树忱,程玉民,李术才.扩展的无网格流形方法[J].岩石力学与工程学报,2005,24(12):2065-2073. 被引量:9
  • 3余天堂.含裂纹体的数值模拟[J].岩石力学与工程学报,2005,24(24):4434-4439. 被引量:27
  • 4李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(Ⅰ:基础理论)[J].计算力学学报,2006,23(2):207-213. 被引量:13
  • 5HUYNH J, MOLENT L, BARTER S. Experimentally derived crack growth models for different stress concentration factors[J]. International Journal of Fatigue, 2008, 30(10- 11): 1766- 1786.
  • 6BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 45(5): 601-620.
  • 7SUKUMAR N. Modeling quasi-static crack growth with fmite element method Part I: Computer Implementation[J].International Journal of Solids and Structures, 2003, 40(26): 7513-7537.
  • 8MOSE N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813 - 833.
  • 9BELYTSCHKO T, GRACIE ROBERT applications to dislocations and On XFEM interfaces[J]. International Journal of Plasticity, 2007, 23(10-11) 1721 -1738.
  • 10MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Method in Engineering, 1999, 46(1): 131 - 150.

共引文献106

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部