期刊文献+

燃烧油滴内部蒸发的气泡周期性暴涨/碎裂 被引量:2

Periodic expansion/fracture of bubbles in burning oil droplets by internal evaporation
原文传递
导出
摘要 利用高速显微摄像技术捕捉到航空煤油RP-3挂滴的燃烧现象——微气泡周期性暴涨/破碎现象。环境温度为973K时,在直径为1.25mm的燃烧油滴内,捕捉到了微气泡的急剧暴涨和瞬间碎裂现象。即:(1)在0.04s内,微气泡直径增长41.6%;(2)在0.01s内,暴涨的气泡在油滴内破碎,激发油滴急剧振荡;(3)油滴恢复相对稳定的蒸发燃烧,内部残留的微气泡,启动第2轮暴涨/破碎;(4)经过3轮暴涨/破碎,油滴燃烧殆尽。因而得出:被高温加热的石英丝挂钩在油滴内部诱发的快速蒸发效应,是微气泡周期性暴涨/碎裂的驱动力,而表面张力则是油滴恢复并保持稳定燃烧的约束机制。 The following phenomena were captured in combustion process by highspeed microscopic camera technology:the periodic expansion/fracture of micro bubbles in aviation kerosene RP-3 suspended droplet.The phenomena that the micro bubbles sharply expanded and suddenly fractured were found inside the burning 1.25 mm diameter droplet at environment temperature of 973 K.Namely:(1) in 0.04 s,the diameter of the micro bubbles increased by 41.6%;(2) in 0.01s,the expansion bubble was fractured inside the droplet,which stimulated the droplet's sharply oscillations;(3) the droplet resumed relatively stable evaporation and combustion,and the internal residuals of the micro bubbles were observed to start the second round of expansion/fracture;(4) the droplet burned away after three rounds of expansion/fracture.The following mechanism was speculated:the quartz fiber heated by high temperature induced the rapid evaporation effect inside the droplet,which was the driving force of the micro bubble periodic expansion/fracture.Moreover,surface tension was the restraint mechanism to restore and maintain the droplet stable comhustion.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第8期1869-1875,共7页 Journal of Aerospace Power
基金 国家自然科学基金(51036004 11672150 11272175) 高等学校博士生导师基金(20130002110044)
关键词 挂滴 燃烧 内部蒸发 微气泡 暴涨和碎裂 suspended droplet combustion internal evaporation micro bubbles expansion and fracture
  • 相关文献

参考文献3

二级参考文献18

  • 1殷雅俊.Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part I): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. 被引量:6
  • 2N Lummen, T Kraska. Homogeneous Nucleation of Iron from Supersaturated Vapor Investigated by Molecular Dynamics Simulation [J]. Aerosol Science, 2005, 36: 1409- 1426.
  • 3Sochi Matsumoto, Shigo Maruyuama, Hicliki Saaruwatari. A Molecular Dynamics Simulation of A Liquids Droplet on A Solid Surface [C]//ASME/JSME Thermal Engineering Conference. 1995(2): 557-562.
  • 4Shigo Maruyama, Sochi Matsumoto, Akohin Ogita. Surface Phenomena of Molecular Clusters by Molecular Dynamics Methods [J]. Thermal Science & Engineering, 1994, 2(1): 77-84.
  • 5M I Flik, C L Tien, Size Effect on the Thermal Conducitivity of High-Tc Thin-Film Superconductors, Coll Pap Heat Transfer HTG-123 ASME, New York, 1989:65 75.
  • 6A E Galashev, V N Chukanov, G I Pozharskaya. Application of Molecular Dynamic Simulation of Water Clusters with CO and CO2 Molecules to Binary Nucleation Problems [J]. Journal of Structural Chemistry, 2002, 43(3): 449-457.
  • 7Pan Yi, D Poulikakos, J Walther, et al. Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface [J]. International Journal of Heat and Mass Transfer, 2002, 45:2087-2100.
  • 8Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Oxford University Press, 1989:22-23.
  • 9S H Park, J G Weng, C L Tien. A Molecular Dynamics Study on Surface Tension of Microbubbles [J]. International Journal of Heat and Mass Transfer, 2001, 44: 1849 -1856.
  • 10Tomoyuki Kinjo, Mitsuhiro Matsumoto. Cavitation Processes and Negative Pressure [J]. Fluid Phase Equilibria, 1998, 144:343-350.

共引文献4

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部