期刊文献+

并车螺旋锥齿轮传动动力学参数二维域界结构分析 被引量:3

Two-dimensional domain structure of dynamical parameters of combining spiral gear transmission
原文传递
导出
摘要 构建了并车螺旋锥齿轮传动含间隙非线性动力学模型,采用变步长Gill数值法对振动方程进行了求解。将胞映射法引入齿轮动力学全局性态域界分析中,获得了动力学参数二维域界解结构。分别考虑了系统在齿侧间隙、综合误差、时变刚度以及阻尼比等参数域界结构中的稳态特性,借助相图、Lyapunov指数(LE)、Poincaré截面、快速傅里叶频谱分析(FFT)等手段研究了齿轮系统在多参数域共同激励下的动态分岔行为,验证了胞映射法在齿轮动力学参数域设计中的准确性。结果表明:当阻尼比ξ∈[0.025,0.225]时,在间隙和综合误差激励下系统均通过倍周期分岔进入混沌;较大阻尼比有助于系统处于稳态周期域中;时变啮合刚度激励下,系统在周期域和混沌域之间发生跃迁,域界附近参数的微小波动将导致吸引子进入另一吸引域中。 The nonlinear dynamical model including piecewise backlash was created for combining spiral gear train,the governing equations of motion was solved by employing variant-step Gill's numerical algorithm.The cell-mapping technique was put forward to investigate the two dimensional basins of dynamic parameters.Parametric excitations covering the backlash,transmission error,time-varying mesh stiffness and damping ratio,were considered in basin planes in terms of steady solutions.The dynamical bifurcation behavior under the excitation of various parameters was performed by means of the phase portrait,Lyapunov exponent (LE),Poincar section and fast Fourier transform (FFT).It is validated that Cell-mapping approach is effective in gear dynamic parameter design.The result shows that the system leads to chaos via period-doubling cascades under the backlash and transmission error while large damping ratio within the range ξ∈ [0.025,0.225] is beneficial to periodic states of the system.Under the excitation of time-varying mesh stiffness,significant transition between periodic response and chaotic motion was exhibited,small changes nearby parametric domain boundary guided the attracter into another basin of attraction.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第8期2017-2024,共8页 Journal of Aerospace Power
基金 国家高技术研究发展计划(2009AA04Z404)
关键词 域界结构 胞映射法 LYAPUNOV指数 分岔 混沌 dynamical domain structure cell-mapping technique bifurcation chaos
  • 相关文献

参考文献5

二级参考文献46

  • 1刘梦军,沈允文,董海军.齿轮系统参数对全局特性影响的研究[J].机械工程学报,2004,40(11):58-63. 被引量:7
  • 2王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 3郜志英,沈允文,董海军,刘晓宁.齿轮系统参数平面内的分岔结构[J].机械工程学报,2006,42(3):68-72. 被引量:9
  • 4Wang Li-hua,Huang Ya-yu,Li Run-fang,et al.Study on nonlinear vibration character of spiral bevel and hypoid gears transmission system[J].International Conference on Mechanical Transmissions.Beijing:Scince Press,2006,:1276-1281.
  • 5Li Hua,Shen Yun-wen,Xu Guo-hua.A-operator method and chaotic behavior of geared system with clearances[J].Proceeding of The International Conference on Mechanical Transimissions,Chongqing.China,2001:243-247.
  • 6Li Ming,Hu Hai-yan.Dynamic Analysis of a spiral bevel-geared rotor-bearing system[J].Journal of Sound and Vibration,2003,259(3):605-624.
  • 7Adomian G,et al.Coupled nonlinear stochastic differential equations[J].J.Math.Anal.Appl.,1985,112:129-135.
  • 8KAHRAMAN A, S1NGH R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156.
  • 9MA Q, KAHRAMAN A. Period-one motions of a mechanical oscillator with periodically time-varying,piecewise-nonlinear stiffness[J]. Journal of Sound and Vibration, 2005, 284: 893-914.
  • 10MA Q, KAHRAMAN A. Subharmonic resonances of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness[J]. Journal of Sound and Vibration, 2006, 294: 624-636.

共引文献45

同被引文献21

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部