期刊文献+

真实爆震载荷作用下爆震室等寿命设计方法 被引量:1

Design method of equal life on detonation combustor under actual detonation loading
原文传递
导出
摘要 结合内径为60mm的等壁厚爆震室,建立其有限元模型并施加真实爆震载荷,确定其疲劳载荷谱类型为周期性常幅谱。通过有限元模型和静态载荷作用下的解析模型分析得出爆震室壁厚和动力放大系数之间的相互影响关系,壁厚通过动力放大系数对自身进行调整,该过程中内壁的等效应力最大值逼近目标应力,以此为基础提出爆震室等寿命设计方法。根据计算结果设计加工变壁厚爆震室试验段,通过试验测量变壁厚爆震室外壁3个测点的应变,并估算3个测点内壁处的疲劳寿命,发现3个疲劳寿命最大误差为8.82%,考虑到试验与数值计算的工况误差可认为3个测点处寿命相同,验证了爆震室等寿命设计方法的正确性。 According to the equal wall thickness detonation combustor of 60mm inner di- ameter, the finite element model was established and the real detonation load was applied. The fatigue load spectrum was confirmed as a constant amplitude spectrum. The relationship between the wall thickness and the dynamic magnification factor of detonation combustor was found by calculating analytical model under static loading and finite element model. The wall thickness adjusted itself through the dynamic magnification factor. In the process, target stress was approached by the equivalent stress of the inner wall. On this basis, the design method of equal life detonation combustor was presented. According to the calculation re- suits, the test section of the variable wall detonation combustor was designed and processed. The strain of three measuring points on the outer wall of variable wall thickness was meas- ured; the fatigue life of the inner wall of these three measuring points was estimated, and the maximum error of the fatigue life was 8. 82%. Considering the working conditions' error be- tween the test and numerical calculation, the life of these three measuring points was the same, proving the validity of the design method of equal life detonation combustor.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第9期2055-2062,共8页 Journal of Aerospace Power
关键词 脉冲爆震发动机 爆震室 等寿命 变壁厚 结构强度 pulse detonation engine detonation combustor equal life variable wall thickness structural strength
  • 相关文献

参考文献5

二级参考文献38

  • 1李海鹏,何立明,周鑫.脉冲爆震发动机性能对爆震室材料强度的需求[J].机械科学与技术,2007,26(5):623-625. 被引量:4
  • 2Tang S. Dynamic response of a tube under moving pressure [ J ]. Journal of Engineering Mechanics Division, 1965,91 ( 5 ) : 97 - 122.
  • 3Behman M, Burcsu E N, Shepherd J E, Zuhal L. The structural response of cylindrical shells to internal shock loading[ J]. Journal of Pressure Vessel Technology, 1999,121:315 - 322.
  • 4Behman W M, Shepherd J E. Linear elastic response of tubes to internal detonation loading [J]. Journal of Sound and Vibration, 2002,252(4) :617 -655.
  • 5Mirzaei M, Biglari H, Salavatian M. Analytical and numerical modeling of the transient elasto-dynamic response of a cylindrical tube to intemal gaseous detonation [ J ]. International Journal of Pressure Vessels and Piping, 2006,83:531 -539.
  • 6Mazaheri K, Mirzaei M, Biglari H. Transient dynamic response of tubes to internal detonation loading[ J]. Journal of Sound and Vibration, 2006,297 : 106 - 122.
  • 7Mirzaei M. On amplification of stress waves in cylindrical tubes under internal dynamic pressures [ J ]. International Journal of Mechanical Sciences, 2008,50 : 1292 - 1303.
  • 8Tang S C. Dynamic response of a thin-walled cylindrical tube under international moving pressure[D]. Michigan USA: University of Michgan, 19 6 2.
  • 9Mirzaei M, Mazaheri K, Biglari H. Analytical modeling of the elastic structural response of tubes to internal detona- tion loadingFJJ. International Journal of Pressure Vessels and Piping, 2005,82 (12) : 883-895.
  • 10Mazaheri K, Mirzaei M, Biglari H. Transient dynamic re- sponse of tubes to internal detonation loading[J]. Journal of Sound and Vibration,2006,297(1-2) :106-122.

共引文献10

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部