期刊文献+

基于压缩采样和模态分析的冲击载荷反演研究 被引量:1

Research on Impact Force Inversion Based on Compressed Sampling Data And Modal Analysis
下载PDF
导出
摘要 近年来,许多学者针对大型飞行器结构的冲击载荷识别进行研究,以期提高这些结构的安全性、降低维护费用、延长使用寿命。在大型结构健康监测中,如何快速、准确地获得冲击力是一个值得深入研究的问题。提出了基于数据的模态分析方法,取代基于有限元分析的模态分析方法,解决传统载荷反演需要依赖结构力学模型的问题;并引入压缩采样理论,基于压缩采样理论提出了一种冲击载荷识别方法,其中包含了稀疏模型,即采样矩阵,还包含重构优化模型;该方法可以解决存储及传输的响应数据过于庞大的问题。最后,用一块大型航空铝板仿真实验来举例说明该冲击力识别方法,结果显示,该方法能够快速、准确地识别出作用在大型结构上的冲击力。 Recently, the scholars have studied the impact force identification in aircraft primary structures in or- der to improve the operation safety of these structures, reduce the maintenance costs and prolong the service life. How to obtain the impact force quickly and accurately is a worthy subject of in-depth study in the structur- al health monitoring. The method of modal analysis based on data is proposed to solve the problem that tradi- tional load inversion depends on structural mechanics model, which replaces the modal analysis method based on finite element analysis. Based on the theory of compression sampling, a new method for the identification of impact load is presented, which includes the sparse model, that is, the sampling matrix, and the reconstruction optimization model. This method can solve the problem that the response data are too large. Finally, an example of a large aluminum plate is used to illustrate the impact force identification method. The results show that the method can quickly and accurately identify the impact force on the large structure.
作者 范志锋 梁栋 李星 朱强 FAN Zhi-feng;LIANG Dong;LI Xing;ZHU Qiang(School of Aerospace Engineering, Xiamen University, Xiamen 361005, China)
出处 《测控技术》 CSCD 2017年第11期1-7,13,共8页 Measurement & Control Technology
基金 国家自然科学基金(51405409) 中央高校基本科研业务费专项资金(20720150179)
关键词 结构健康监测 模态分析 压缩采样 载荷反演 structural health monitoring modal analysis compressed sampling impact force inversion
  • 相关文献

参考文献5

二级参考文献55

  • 1杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,34(2):215-223. 被引量:63
  • 2唐和生,薛松涛,陈镕,王远功.利用组合参数的结构损伤识别及试验研究[J].振动与冲击,2004,23(4):107-111. 被引量:4
  • 3Processer W H. Development of structural health managment technology for aerospace vehices [ R ]. NASA - 2003 - janaf - whp.
  • 4Harman R M. Wireless solutions for aircraft condition based maintenance systems[A]. IEEE Aerospace Conference,2002.
  • 5Gandy M. Wireless sensors for ading aircraft heatth monitoring [ Z ].Lochheed Martin Aeronautics Company,2000.
  • 6Vachtsevanos G and Wang P. Faul prognosis using dynamic wavelet neural networks[A]. IEEE,2001.
  • 7Boltryk P J. Intelligent sensors -- a generic software approach [ A ].Journal of Physics:Conference Series 15,2005.
  • 8Oosterom M and Babuska R. Virtual sensor for fault detection and isolation in flight control system -fuzzy mdeling approch[A]. Decision and Control ,2000. Proceedings of the 39^th IEEE Conference on. 2000.
  • 9Wilson A. MEMS based corrosion and stress sensors for non-destructive aircraft evaluation [ A ]. Structure Health Monitoring Conference,2001.
  • 10Staszewski W J, Boiler C, Tomlinson G R. Health monitoring of aerospace structures:smart sensor technologies and signal processing[ M]. England:John Wiley & Sons Ltd,2004:1 -3.

共引文献116

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部