期刊文献+

径向点插值法局部形参的改进校准方法

The optimized calibration method for the local shape factors of radial point interpolation method
下载PDF
导出
摘要 径向点插值法(Radial Point Interpolation Method,RPIM)中基函数形参、支持域大小和平均节点间距等因素直接影响算法的精度与计算效率,而过小形参会引起插值不稳定现象.针对此问题,提出一种基于局部形参校准法(Local Shape Factor Calibration Method,LSFCM)改进的形参优化算法,研究RPIM应用于电磁场问题中插值精度的影响因素,在不同形参、支持域大小和节点距离时的全局均方根插值误差曲线上,根据插值精度和计算效率灵活选择全局形参,简化形参设置与节点插值计算过程,提高计算效率.数值试验结果验证了所提方法的有效性. In the radial point interpolation method (RPIM), the shape factors such as the parameters of basis function, the support domain size and the average node distance directly affect the interpolation precision and computational efficiency, and the small shape parameter may lead to interpolation instability. In order to optimize parameter selection in RPIM, the algorithm based on the local shape factor calibration method(LSFCM)is proposed in the electromagnetic field problem. The global root mean square (RMS) in- terpolation error curve with different support domain size, node distance and different parameters can sim- plify the process of the shape parameter selection and node interpolation. The numerical results show the algorithm has improved the interpolation precision and computational efficiency.
作者 禹忠 杨刘伟 柯熙政 YU Zhong;YANG Liuwei;KE Xizheng(Xi' an University of Technology, Xi' an 710048, China;Xi' an University of Posts ~ Telecommunication, Xi' an 710121, China)
出处 《电波科学学报》 CSCD 北大核心 2017年第4期410-415,共6页 Chinese Journal of Radio Science
基金 国家自然科学基金(No.61377080)
关键词 无网格法 径向点插值 径向基函数 支持域 形参校准 meshless method radial point interpolation method radial basis {unctions support domain shape parameter calibration
  • 相关文献

参考文献2

二级参考文献16

  • 1赵瑾,徐善驾,吴先良.一种高阶辛时域有限差分法的研究[J].电波科学学报,2004,19(5):569-572. 被引量:5
  • 2耿友林,吴信宝,官伯然.导体球涂覆各向异性铁氧体介质电磁散射的解析解[J].电子与信息学报,2006,28(9):1740-1743. 被引量:6
  • 3金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998..
  • 4AL-KANHAI. M A, ARVAS E. Electromagnetic scattering from a chiral cylinder of arbitrary cross sec- tion [J]. IEEE Trans Antennas and Propagation, 1996, 44(7): 1041-1048.
  • 5EDWARD K N, YUNG H Y, DING R S, et al. Fi- nite-difference analysis of H-Plane waveguide Y-junc- tion circulars[J]. Microwave and Optical Technology Letters, 1999, 20(6): 414-422.
  • 6ZHANG Y, WEI X, LIE. Electromagnetic scattering from three-dimensional bi-anisotropic objects using hy- brid finite element-boundary integral method[J]. J of Electromagn Waves and App, 2004, 18(11): 1549- 1563.
  • 7OZGUN O, KUZUOGLU M. A non-iterative domain decomposition method for finite element analysis of 3D electromagnetic scattering problems[C]//IEEE Anten- nas and Propagation Society International Symposium. San Diego, July,5-11, 2008: 40-50.
  • 8ZHU J, CHEN RS. FAN Z H, et al. Efficient pre- conditioner for the finite-element boundary integral a- nalysis of electromagnetic scattering in the half space [J]. IET Microwaves Antennas & Propagation, 2010. 4(3): 374-380.
  • 9JACKSON S A, VOUVAKIS M N. Octree-based fi- nite element method for electromagnetic scattering problcms[C]//IEEE Antennas and Propagation Soci- ety International Symposium. Toronto, July, 11-17 2010: 1-4.
  • 10ZHANG Ruigang, CHEN Huanzhen. An immersed finite element method for anisotropic flow models in porous medium[C]// International Conference on In- formation Science and Technology. Nanjing, March 26-28,2011:168 175.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部