期刊文献+

Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone 被引量:2

Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone
下载PDF
导出
摘要 A three-dimensional(3-D) ocean model is coupled with a two-dimensional(2-D) sea ice model, to revisit a nonlinear advection mechanism, one of the most important mesoscale eddy genesis mechanisms in the marginal ice zone. Two-dimensional ocean model simulations suggest nonlinear advection mechanism is more important when the water gets shallower. Instead of considering the ocean as barotropic fluid in the 2-D ocean model, the 3-D ocean model allows the sea ice to affect the current directly in the surface layer via ocean-ice interaction. It is found that both mesoscale eddy and sea surface elevation are sensitive to changes in a water depth in the 3-D simulations. The vertical profile of a current velocity in 3-D experiments suggests that when the water depth gets shallower, the current move faster in each layer, which makes the sea surface elevation be nearly inverse proportional to the water depth with the same wind forcing during the same time. It is also found that because of the vertical motion, the magnitude of variations in the sea surface elevation in the 3-D simulations is very small,being only 1% of the change in the 2-D simulations. And it seems the vertical motion to be the essential reason for the differences between the 3-D and 2-D experiments. A three-dimensional(3-D) ocean model is coupled with a two-dimensional(2-D) sea ice model, to revisit a nonlinear advection mechanism, one of the most important mesoscale eddy genesis mechanisms in the marginal ice zone. Two-dimensional ocean model simulations suggest nonlinear advection mechanism is more important when the water gets shallower. Instead of considering the ocean as barotropic fluid in the 2-D ocean model, the 3-D ocean model allows the sea ice to affect the current directly in the surface layer via ocean-ice interaction. It is found that both mesoscale eddy and sea surface elevation are sensitive to changes in a water depth in the 3-D simulations. The vertical profile of a current velocity in 3-D experiments suggests that when the water depth gets shallower, the current move faster in each layer, which makes the sea surface elevation be nearly inverse proportional to the water depth with the same wind forcing during the same time. It is also found that because of the vertical motion, the magnitude of variations in the sea surface elevation in the 3-D simulations is very small,being only 1% of the change in the 2-D simulations. And it seems the vertical motion to be the essential reason for the differences between the 3-D and 2-D experiments.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期14-20,共7页 海洋学报(英文版)
关键词 nonlinear advection mesoscale eddy marginal ice zone ocean-ice interaction nonlinear advection mesoscale eddy marginal ice zone ocean-ice interaction
  • 相关文献

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部