期刊文献+

基于Spark的船舶航行轨迹聚类方法 被引量:15

Clustering Method of Ship's Navigation Trajectory Set Based on Spark
下载PDF
导出
摘要 依托船舶自动识别系统(Automatic Identification System,AIS)数据,利用云计算并结合聚类算法,对船舶历史数据进行轨迹聚类分析,构建船舶航行正常轨迹模型,为实时检测船舶异常轨迹奠定基础,进而为提高水上交通监管智能化水平提供新方法。针对目前轨迹聚类算法效率低等问题,基于Spark内存计算技术及数据分区思想,提出一种改进的并行子轨迹聚类算法SPDBSCANST(Parallel DBSCAN of Sub Trajectory Based on Spark)。以长江航道武汉段船舶航行数据为例进行试验验证,并通过可视化方式呈现。结果表明,改进后的算法的聚类效率和效果都有明显提升。 Constructing normal navigation trajectory model through processing historical AIS( Automatic Identification System) data of ships with the trajectory clustering algorithm is a way of setting up the reference for real-time detection of abnormal ships trajectory. Aimed at the problem of low efficiency of the current trajectory clustering algorithm,an improved parallel sub trajectory clustering algorithm is proposed named as SPDBSCANST( Parallel DBSCAN of Sub Trajectory Based on Spark) featuring Spark memory computing technology and data partition. The algorithm is verified with the ship navigation data of Yangtze River Waterway. The visualization of the trajectories is also achieved. The experiments show that the efficiency of the improved clustering algorithm is increased significantly.
出处 《中国航海》 CSCD 北大核心 2017年第3期49-53,68,共6页 Navigation of China
基金 国家自然科学基金(51479155) 城市灾害地图可视化方法研究(JD20150301)
关键词 水路运输 船舶自动识别系统 SPARK 轨迹聚类 正常轨迹建模 waterway transportation AIS Spark trajectory clustering normal trajectory modeling
  • 相关文献

参考文献4

二级参考文献45

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2国际海事组织.通用船载自动识别系统国际标准汇编[G].袁安存,张淑芳编译.大连:大连海事大学出版社,2005.
  • 3吴兆麟;朱军.海上交通工程[M]大连:大连海事大学出版社,2004.
  • 4国际海事组织;袁安存;张淑芳.通用船载自动识别系统国际标准汇编[S]大连:大连海事大学出版社,2005.
  • 5ITU-R Recommendation M. 1371-1.Technical characteristics of a universal shipborne automatic identification system using time-division multiple access in the maritime mobile band[G].2001.
  • 6Zhu Feixiang,Zhang Yingjua. "Research on Marine Traffic Data Mining System Based on AIS[A].2011.
  • 7Jiawei Han;Micheline Kamber;范明;孟小峰.数据挖掘概念与技术[M]北京:机械工业出版社,2007.
  • 8R.Agrawal,T.Imielinski,A.Swami. Mining Association Rules between Sets of Items in Large Databases[A].1993.
  • 9R.Agrawal,R.Srikant. Fast algorithms for mining association[A].1994.
  • 10LEE J, HAN J, WHANG K. Trajectory Clustering: A Partition-and-Group Framework[ C ]. ACM SIGMOD In- ternational Conference, on Management of Data, 2007.

共引文献103

同被引文献98

引证文献15

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部